1,119 research outputs found

    Multi-scale Multi-band DenseNets for Audio Source Separation

    Full text link
    This paper deals with the problem of audio source separation. To handle the complex and ill-posed nature of the problems of audio source separation, the current state-of-the-art approaches employ deep neural networks to obtain instrumental spectra from a mixture. In this study, we propose a novel network architecture that extends the recently developed densely connected convolutional network (DenseNet), which has shown excellent results on image classification tasks. To deal with the specific problem of audio source separation, an up-sampling layer, block skip connection and band-dedicated dense blocks are incorporated on top of DenseNet. The proposed approach takes advantage of long contextual information and outperforms state-of-the-art results on SiSEC 2016 competition by a large margin in terms of signal-to-distortion ratio. Moreover, the proposed architecture requires significantly fewer parameters and considerably less training time compared with other methods.Comment: to appear at WASPAA 201

    Adversarial Semi-Supervised Audio Source Separation applied to Singing Voice Extraction

    Full text link
    The state of the art in music source separation employs neural networks trained in a supervised fashion on multi-track databases to estimate the sources from a given mixture. With only few datasets available, often extensive data augmentation is used to combat overfitting. Mixing random tracks, however, can even reduce separation performance as instruments in real music are strongly correlated. The key concept in our approach is that source estimates of an optimal separator should be indistinguishable from real source signals. Based on this idea, we drive the separator towards outputs deemed as realistic by discriminator networks that are trained to tell apart real from separator samples. This way, we can also use unpaired source and mixture recordings without the drawbacks of creating unrealistic music mixtures. Our framework is widely applicable as it does not assume a specific network architecture or number of sources. To our knowledge, this is the first adoption of adversarial training for music source separation. In a prototype experiment for singing voice separation, separation performance increases with our approach compared to purely supervised training.Comment: 5 pages, 2 figures, 1 table. Final version of manuscript accepted for 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Implementation available at https://github.com/f90/AdversarialAudioSeparatio

    Weakly Supervised Audio Source Separation via Spectrum Energy Preserved Wasserstein Learning

    Full text link
    Separating audio mixtures into individual instrument tracks has been a long standing challenging task. We introduce a novel weakly supervised audio source separation approach based on deep adversarial learning. Specifically, our loss function adopts the Wasserstein distance which directly measures the distribution distance between the separated sources and the real sources for each individual source. Moreover, a global regularization term is added to fulfill the spectrum energy preservation property regardless separation. Unlike state-of-the-art weakly supervised models which often involve deliberately devised constraints or careful model selection, our approach need little prior model specification on the data, and can be straightforwardly learned in an end-to-end fashion. We show that the proposed method performs competitively on public benchmark against state-of-the-art weakly supervised methods

    Fast and scalable non-parametric Bayesian inference for Poisson point processes

    Get PDF
    We study the problem of non-parametric Bayesian estimation of the intensity function of a Poisson point process. The observations are nn independent realisations of a Poisson point process on the interval [0,T][0,T]. We propose two related approaches. In both approaches we model the intensity function as piecewise constant on NN bins forming a partition of the interval [0,T][0,T]. In the first approach the coefficients of the intensity function are assigned independent gamma priors, leading to a closed form posterior distribution. On the theoretical side, we prove that as nβ†’βˆž,n\rightarrow\infty, the posterior asymptotically concentrates around the "true", data-generating intensity function at an optimal rate for hh-H\"older regular intensity functions (0<h≀10 < h\leq 1). In the second approach we employ a gamma Markov chain prior on the coefficients of the intensity function. The posterior distribution is no longer available in closed form, but inference can be performed using a straightforward version of the Gibbs sampler. Both approaches scale well with sample size, but the second is much less sensitive to the choice of NN. Practical performance of our methods is first demonstrated via synthetic data examples. We compare our second method with other existing approaches on the UK coal mining disasters data. Furthermore, we apply it to the US mass shootings data and Donald Trump's Twitter data.Comment: 45 pages, 22 figure

    Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders

    Get PDF
    Supervised multi-channel audio source separation requires extracting useful spectral, temporal, and spatial features from the mixed signals. The success of many existing systems is therefore largely dependent on the choice of features used for training. In this work, we introduce a novel multi-channel, multi-resolution convolutional auto-encoder neural network that works on raw time-domain signals to determine appropriate multi-resolution features for separating the singing-voice from stereo music. Our experimental results show that the proposed method can achieve multi-channel audio source separation without the need for hand-crafted features or any pre- or post-processing
    • …
    corecore