848 research outputs found

    Climate Change and Critical Agrarian Studies

    Full text link
    Climate change is perhaps the greatest threat to humanity today and plays out as a cruel engine of myriad forms of injustice, violence and destruction. The effects of climate change from human-made emissions of greenhouse gases are devastating and accelerating; yet are uncertain and uneven both in terms of geography and socio-economic impacts. Emerging from the dynamics of capitalism since the industrial revolution — as well as industrialisation under state-led socialism — the consequences of climate change are especially profound for the countryside and its inhabitants. The book interrogates the narratives and strategies that frame climate change and examines the institutionalised responses in agrarian settings, highlighting what exclusions and inclusions result. It explores how different people — in relation to class and other co-constituted axes of social difference such as gender, race, ethnicity, age and occupation — are affected by climate change, as well as the climate adaptation and mitigation responses being implemented in rural areas. The book in turn explores how climate change – and the responses to it - affect processes of social differentiation, trajectories of accumulation and in turn agrarian politics. Finally, the book examines what strategies are required to confront climate change, and the underlying political-economic dynamics that cause it, reflecting on what this means for agrarian struggles across the world. The 26 chapters in this volume explore how the relationship between capitalism and climate change plays out in the rural world and, in particular, the way agrarian struggles connect with the huge challenge of climate change. Through a huge variety of case studies alongside more conceptual chapters, the book makes the often-missing connection between climate change and critical agrarian studies. The book argues that making the connection between climate and agrarian justice is crucial

    Phosphate-based glass microspheres for bone repair and localised chemotherapy and radiotherapy treatment of bone cancers

    Get PDF
    Phosphate-based glasses (PBGs) are hugely promising materials for bone repair and regeneration as they can be formulated to be compositionally similar to the inorganic component of bone. Alterations to PBG formulations can be made to tailor their degradation rates and subsequent release of biotherapeutic ions to induce cellular responses, such as osteogenesis. In this work, novel invert-PBGs in the series xP2O5·(56-x)CaO·24MgO·20Na2O (mol%), where x is 40, 35, 32.5 and 30, were formulated to contain pyro (Q1) and orthophosphate (Q0) species. These PBGs were then processed into highly porous microspheres (PMS) via a flame spheroidisation process developed within the research group. Compositional and structural analysis using EDX and 31P-MAS NMR analysis revealed significant depolymerisation had occurred with reducing phosphate content, which increased further when PBGs were processed into PMS. A decrease from 50% to 0% of Q2 species and increase from 6% to 35% of Q0 species was observed for the PMS when the phosphate content decreased from 40 to 30 mol%. Ion release studies also revealed up to a 4-fold decrease in cations and an 8-fold decrease in phosphate anions released with decreasing phosphate content. In vitro bioactivity studies revealed that the orthophosphate rich PMS had favourable bioactivity responses after 28 days of immersion in SBF. Indirect and direct cell culture studies confirmed that the PMS were cytocompatible and supported cell growth and proliferation over 7 days of culture. The P30 PMS with ~65% pyro and ~35% ortho phosphate content revealed the most favourable properties and was proposed to be highly suitable for bone repair and regeneration, especially for orthobiologic applications owing to their highly porous morphology. Doxorubicin (DOX) was used as a model drug to assess its loading and release kinetics from porous phosphate-based glass microspheres to ascertain their suitability for localised drug delivery for the treatment of bone cancers. P40 PMS revealed a DOX loading efficiency of 55%, which was significantly greater than P30 PMS at 29.1%. Both P40 and P30 PMS released more DOX in phosphate buffered saline (PBS) at pH 5 as compared to release at pH 7.4. P40 PMS released 57% of DOX at pH 5 over a 48-hour period, whereas P30 PMS only released 15% of DOX. A pH-responsive DOX release in a more acidic environment suggests that the chemotherapeutic delivery and efficacy properties may lead to increased drug release within tumour tissues. Internal radiotherapy has been shown to be an effective treatment modality to destroy cancerous tissues and is usually achieved by the placement of radioactive sources at the tumour site. In this work, a novel processing method was established to combine yttrium oxide (Y2O3) with P40 phosphate glass particles to form uniform, solid microspheres containing very high yttrium levels via our flame spheroidisation process. The 30Y (~15 mol% Y2O3) and 50Y microspheres (~39 mol% Y2O3) had equivalent and superior yttrium content in comparison to clinically available microspheres used for internal radiotherapy (i.e., Therasphere®). The yttrium-containing microspheres formed were shown to be glass-ceramics, with crystalline phases present but with all elements homogenously distributed throughout the microspheres. Increasing yttrium addition resulted in increased durability of the microspheres, with 50Y microspheres revealing a 10-fold decrease in the release rate of some ions compared to P40 solid microspheres. Indirect and direct cell culture studies confirmed that the 30Y and 50Y microspheres were cytocompatible and supported cell growth and proliferation over 7 days of culture. No significant difference was observed in the metabolic and ALP activity for MG63s for both 30Y and 50Y microspheres from both indirect and direct cell culture studies. Yttrium was incorporated into the phosphate-based microspheres at a level that had not previously been achieved or observed from the literature studies and were shown to support bone cell attachment and growth. A high yttrium content could enable more radiation to be delivered per dose of microspheres, resulting in shorter neutron activation times which could prove beneficial for logistical issues associated with transportation of the biomaterials following nuclear activation. The radionuclide holmium-166 (166Ho) which is comparable to yttrium-90 (90Y) in that it emits β-radiation with a similar tissue penetration range and a significantly reduced half-life of 26.8 hours, was also investigated. The beneficial paramagnetic properties and density of 166Ho indicates that 166Ho-doped materials could be visualised through clinical imaging techniques, whilst simultaneously delivering a therapeutic dose of radiation. In this work, solid holmium-containing microspheres were similarly produced via the flame spheroidisation process using holmium oxide (Ho2O3) and P40 phosphate glass particles. The glass-ceramic microspheres produced had equivalent (30H: ~17mol% Ho2O3) and superior (50H: ~30mol% Ho2O3) holmium content in comparison to clinically used yttrium-doped microspheres (i.e. Therasphere®). Analogous to yttrium containing microspheres, elevated holmium content resulted in topographically unique features on the surface of some 50H microspheres. This increased holmium content resulted in significantly reduced ion release rates for all the ions and the holmium-microspheres did not show evidence of bioactivity. However, in vitro indirect and direct cell culture studies demonstrated their cytocompatibility. No significant difference was observed in the metabolic and ALP activity of MG63 cells for 30H and 50H microspheres in both the indirect and direct cell culture methods. This study appears to be the first to demonstrate microspheres containing high levels of holmium content that can also facilitate direct cell growth and proliferation of human osteoblast-like cells. The microspheres developed are therefore hugely promising biomaterials for both drug delivery and internal radiotherapy applications, as well as for promoting bone repair and regeneration at damaged sites. High holmium content could also result in higher specific activity per microsphere to increase radiotherapy delivery whilst also promoting higher visibility via imaging modalities

    Efficient Black-box Checking of Snapshot Isolation in Databases

    Full text link
    Snapshot isolation (SI) is a prevalent weak isolation level that avoids the performance penalty imposed by serializability and simultaneously prevents various undesired data anomalies. Nevertheless, SI anomalies have recently been found in production cloud databases that claim to provide the SI guarantee. Given the complex and often unavailable internals of such databases, a black-box SI checker is highly desirable. In this paper we present PolySI, a novel black-box checker that efficiently checks SI and provides understandable counterexamples upon detecting violations. PolySI builds on a novel characterization of SI using generalized polygraphs (GPs), for which we establish its soundness and completeness. PolySI employs an SMT solver and also accelerates SMT solving by utilizing the compact constraint encoding of GPs and domain-specific optimizations for pruning constraints. As demonstrated by our extensive assessment, PolySI successfully reproduces all of 2477 known SI anomalies, detects novel SI violations in three production cloud databases, identifies their causes, outperforms the state-of-the-art black-box checkers under a wide range of workloads, and can scale up to large-sized workloads.Comment: 20 pages, 15 figures, accepted by PVLD

    Optical Synchronization of Time-of-Flight Cameras

    Get PDF
    Time-of-Flight (ToF)-Kameras erzeugen Tiefenbilder (3D-Bilder), indem sie Infrarotlicht aussenden und die Zeit messen, bis die Reflexion des Lichtes wieder empfangen wird. Durch den Einsatz mehrerer ToF-Kameras können ihre vergleichsweise geringere Auflösungen überwunden, das Sichtfeld vergrößert und Verdeckungen reduziert werden. Der gleichzeitige Betrieb birgt jedoch die Möglichkeit von Störungen, die zu fehlerhaften Tiefenmessungen führen. Das Problem der gegenseitigen Störungen tritt nicht nur bei Mehrkamerasystemen auf, sondern auch wenn mehrere unabhängige ToF-Kameras eingesetzt werden. In dieser Arbeit wird eine neue optische Synchronisation vorgestellt, die keine zusätzliche Hardware oder Infrastruktur erfordert, um ein Zeitmultiplexverfahren (engl. Time-Division Multiple Access, TDMA) für die Anwendung mit ToF-Kameras zu nutzen, um so die Störungen zu vermeiden. Dies ermöglicht es einer Kamera, den Aufnahmeprozess anderer ToF-Kameras zu erkennen und ihre Aufnahmezeiten schnell zu synchronisieren, um störungsfrei zu arbeiten. Anstatt Kabel zur Synchronisation zu benötigen, wird nur die vorhandene Hardware genutzt, um eine optische Synchronisation zu erreichen. Dazu wird die Firmware der Kamera um das Synchronisationsverfahren erweitert. Die optische Synchronisation wurde konzipiert, implementiert und in einem Versuchsaufbau mit drei ToF-Kameras verifiziert. Die Messungen zeigen die Wirksamkeit der vorgeschlagenen optischen Synchronisation. Während der Experimente wurde die Bildrate durch das zusätzliche Synchronisationsverfahren lediglich um etwa 1 Prozent reduziert.Time-of-Flight (ToF) cameras produce depth images (three-dimensional images) by measuring the time between the emission of infrared light and the reception of its reflection. A setup of multiple ToF cameras may be used to overcome their comparatively low resolution, increase the field of view, and reduce occlusion. However, the simultaneous operation of multiple ToF cameras introduces the possibility of interference resulting in erroneous depth measurements. The problem of interference is not only related to a collaborative multicamera setup but also to multiple ToF cameras operating independently. In this work, a new optical synchronization for ToF cameras is presented, requiring no additional hardware or infrastructure to utilize a time-division multiple access (TDMA) scheme to mitigate interference. It effectively enables a camera to sense the acquisition process of other ToF cameras and rapidly synchronizes its acquisition times to operate without interference. Instead of requiring cables to synchronize, only the existing hardware is utilized to enable an optical synchronization. To achieve this, the camera’s firmware is extended with the synchronization procedure. The optical synchronization has been conceptualized, implemented, and verified with an experimental setup deploying three ToF cameras. The measurements show the efficacy of the proposed optical synchronization. During the experiments, the frame rate was reduced by only about 1% due to the synchronization procedure

    A microfabricated chip trap for laser-cooled molecules

    Get PDF
    I present our efforts to develop a molecule chip: a microfabricated device for trapping ultracold molecules near a surface and interfacing them with photons in a microwave resonator. This work is a step towards a cavity quantum electrodynamics system, where molecular qubits could be coupled and controlled via microwave photons. Such a system would feature both the strong coupling of a molecular transition to cavity photons, similar to those found in superconducting systems, as well as long coherence times as can be found in typical atomic systems. I present the design and construction of a chip capable of trapping ultracold molecules, together with simulations informing the design choices. I report the microfabrication processes used to make the chip, characterize the quality of these processes and describe the design and construction of the apparatus needed to load molecules onto the chip and detect them. I also present a scheme for background-free imaging of molecules near the surface. Finally, I show how a microwave resonator could be used to control the state of a trapped molecule, and describe a scheme for generating non-classical states in a trapped spin-ensemble.Open Acces

    Designing a New Tactile Display Technology and its Disability Interactions

    Get PDF
    People with visual impairments have a strong desire for a refreshable tactile interface that can provide immediate access to full page of Braille and tactile graphics. Regrettably, existing devices come at a considerable expense and remain out of reach for many. The exorbitant costs associated with current tactile displays stem from their intricate design and the multitude of components needed for their construction. This underscores the pressing need for technological innovation that can enhance tactile displays, making them more accessible and available to individuals with visual impairments. This research thesis delves into the development of a novel tactile display technology known as Tacilia. This technology's necessity and prerequisites are informed by in-depth qualitative engagements with students who have visual impairments, alongside a systematic analysis of the prevailing architectures underpinning existing tactile display technologies. The evolution of Tacilia unfolds through iterative processes encompassing conceptualisation, prototyping, and evaluation. With Tacilia, three distinct products and interactive experiences are explored, empowering individuals to manually draw tactile graphics, generate digitally designed media through printing, and display these creations on a dynamic pin array display. This innovation underscores Tacilia's capability to streamline the creation of refreshable tactile displays, rendering them more fitting, usable, and economically viable for people with visual impairments

    The LDBC Financial Benchmark

    Full text link
    The Linked Data Benchmark Council's Financial Benchmark (LDBC FinBench) is a new effort that defines a graph database benchmark targeting financial scenarios such as anti-fraud and risk control. The benchmark has one workload, the Transaction Workload, currently. It captures OLTP scenario with complex, simple read queries and write queries that continuously insert or delete data in the graph. Compared to the LDBC SNB, the LDBC FinBench differs in application scenarios, data patterns, and query patterns. This document contains a detailed explanation of the data used in the LDBC FinBench, the definition of transaction workload, a detailed description for all queries, and instructions on how to use the benchmark suite.Comment: For the source code of this specification, see the ldbc_finbench_docs repository on Githu
    • …
    corecore