60 research outputs found

    Feature Study on a Programmable Network Traffic Classifier

    Get PDF

    Mémoires associatives algorithmiques pou l'opération de recherche du plus long préfixe sur FPGA

    Get PDF
    RÉSUMÉ Les réseaux prédiffusés programmables — en anglais Field Programmable Gate Arrays (FPGAs)— sont omniprésents dans les centres de données, pour accélérer des tâches d’indexations et d’apprentissage machine, mais aussi plus récemment, pour accélérer des opérations réseaux. Dans cette thèse, nous nous intéressons à l’opération de recherche du plus long préfixe en anglais Longest Prefix Match (LPM) — sur FPGA. Cette opération est utilisée soit pour router des paquets, soit comme un bloc de base dans un plan de données programmable. Bien que l’opération LPM soit primordiale dans un réseau, celle-ci souffre d’inefficacité sur FPGA. Dans cette thèse, nous démontrons que la performance de l’opération LPM sur FPGA peut être substantiellement améliorée en utilisant une approche algorithmique, où l’opération LPM est implémentée à l’aide d’une structure de données. Par ailleurs, les résultats présentés permettent de réfléchir à une question plus large : est-ce que l’architecture des FPGA devrait être spécialisée pour les applications réseaux ? Premièrement, pour l’application de routage IPv6 dans le réseau Internet, nous présentons SHIP. Cette solution exploite les caractéristiques des préfixes pour construire une structure de données compacte, pouvant être implémentée de manière efficace sur FPGA. SHIP utilise l’approche ńdiviser pour régnerż pour séparer les préfixes en groupes de faible cardinalité et ayant des caractéristiques similaires. Les préfixes contenus dans chaque groupe sont en-suite encodés dans une structure de données hybride, où l’encodage des préfixes est adapté suivant leurs caractéristiques. Sur FPGA, SHIP augmente l’efficacité de l’opération LPM comparativement à l’état de l’art, tout en supportant un débit supérieur à 100 Gb/s. Deuxièment, nous présentons comment implémenter efficacement l’opération LPM pour un plan de données programmable sur FPGA. Dans ce cas, contrairement au routage de pa-quets, aucune connaissance à priori des préfixes ne peut être utilisée. Par conséquent, nous présentons un cadre de travail comprenant une structure de données efficace, indépendam-ment des caractéristiques des préfixes contenus, et des méthodes permettant d’implémenter efficacement la structure de données sur FPGA. Un arbre B, étendu pour l’opération LPM, est utilisé en raison de sa faible complexité algorithmique. Nous présentons une méthode pour allouer à la compilation le minimum de ressources requis par l’abre B pour encoder un ensemble de préfixes, indépendamment de leurs caractéristiques. Plusieurs méthodes sont ensuite présentées pour augmenter l’efficacité mémoire après implémentation de la structure de données sur FPGA. Évaluée sur plusieurs scénarios, cette solution est capable de traiter plus de 100 Gb/s, tout en améliorant la performance par rapport à l’état de l’art.----------ABSTRACT FPGAs are becoming ubiquitous in data centers. First introduced to accelerate indexing services and machine learning tasks, FPGAs are now also used to accelerate networking operations, including the LPM operation. This operation is used for packet routing and as a building block in programmable data planes. However, for the two uses cases considered, the LPM operation is inefficiently implemented in FPGAs. In this thesis, we demonstrate that the performance of LPM operation can be significantly improved using an algorithmic approach, where the LPM operation is implemented using a data structure. In addition, using the results presented in this thesis, we can answer a broader question: Should the FPGA architecture be specialized for networking? First, we present the SHIP data structure that is tailored to routing IPv6 packets in the Internet network. SHIP exploits the prefix characteristics to build a compact data structure that can be efficiently mapped to FPGAs. First, SHIP uses a "divide and conquer" approach to bin prefixes in groups with a small cardinality and sharing similar characteristics. Second, a hybrid-trie-tree data structure is used to encode the prefixes held in each group. The hybrid data structure adapts the prefix encoding method to their characteristics. Then, we demonstrated that SHIP can be efficiently implemented in FPGAs. Implemented on FPGAs, the proposed solution improves the memory efficiency over the state of the art solutions, while supporting a packet throughput greater than 100 Gbps.While the prefixes and their characteristics are known when routing packets in the Internet network, this is not true for programmable data planes. Hence, the second solution, designed for programmable data planes, does not exploit any prior knowledge of the prefix stored. We present a framework comprising an efficient data structure to encode the prefixes and methods to map the data structure efficiently to FPGAs. First, the framework leverages a B-tree, extended to support the LPM operation, for its low algorithmic complexity. Second, we present a method to allocate at compile time the minimum amount of resources that can be used by the B-tree. Third, our framework selects the B-tree parameters to increase the post-implementation memory efficiency and generates the corresponding hardware architecture. Implemented on FPGAs, this solution supports packet throughput greater than 100 Gbps, while improving the performance over the state of the art

    A Scalable High-Performance Memory-Less IP Address Lookup Engine Suitable for FPGA Implementation

    Get PDF
    RÉSUMÉ La recherche d'adresse IP est une opération très importante pour les routeurs Internet modernes. De nombreuses approches dans la littérature ont été proposées pour réaliser des moteurs de recherche d'adresse IP (Address Lookup Engine – ALE), à haute performance. Les ALE existants peuvent être classés dans l’une ou l’autre de trois catégories basées sur: les mémoires ternaires adressables par le contenu (TCAM), les Trie et les émulations de TCAM. Les approches qui se basent sur des TCAM sont coûteuses et elles consomment beaucoup d'énergie. Les techniques qui exploitent les Trie ont une latence non déterministe qui nécessitent généralement des accès à une mémoire externe. Les techniques qui exploitent des émulations de TCAM combinent généralement des TCAM avec des circuits à faible coût. Dans ce mémoire, l'objectif principal est de proposer une architecture d'ALE qui permet la recherche rapide d’adresses IP et qui apporte une solution aux principales lacunes des techniques basées sur des TCAM et sur des Trie. Atteindre une vitesse de traitement suffisante dans l'ALE est un aspect important. Des accélérateurs matériels ont été adoptés pour obtenir une le résultat de recherche à haute vitesse. Le FPGA permettent la mise en œuvre d’accélérateurs matériels reconfigurables spécialisés. Cinq architectures d’ALE de type émulation de TCAM sont proposés dans ce mémoire : une sérielle, une parallèle, une architecture dite IP-Split, une variante appelée IP-Split-Bucket et une version de l’IP-Split-Bucket qui supporte les mises à jours. Chaque architecture est construite à partir de l’architecture précédente de manière progressive dans le but d’en améliorer les performances. L'architecture sérielle utilise des mémoires pour stocker la table d’adresses de transmission et un comparateur pour effectuer une recherche sérielle sur les entrées. L'architecture parallèle stocke les entrées de la table dans les ressources logiques d’un FPGA, et elle emploie une recherche parallèle en utilisant N comparateurs pour une table avec N entrées. L’architecture IP-Split emploie un niveau de décodeurs pour éviter des comparaisons répétitives dans les entrées équivalentes de la table. L'architecture IP-Split-Bucket est une version améliorée de l'architecture précédente qui utilise une méthode de partitionnement visant à optimiser l'architecture IP-Split. L’IP-Split-Bucket qui supporte les mises à jour est la dernière architecture proposée. Elle soutient la mise à jour et la recherche à haute vitesse d'adresses IP. Les résultats d’implémentations montrent que l'architecture d’ALE qui offre les meilleures performances est l’IP-Split-Bucket, qui n’a pas recours à une ou plusieurs mémoires. Pour une table d’adresses de transmission IPv4 réelle comportant 524 k préfixes, l'architecture IP-Split-Bucket atteint un débit de 103,4 M paquets par seconde et elle consomme respectivement 23% et 22% des tables de conversion (LUTs) et des bascules (FFs) sur une puce Xilinx XC7V2000T.----------ABSTRACT High-performance IP address lookup is highly demanded for modern Internet routers. Many approaches in the literature describe a special purpose Address Lookup Engines (ALE), for IP address lookup. The existing ALEs can be categorised into the following techniques: Ternary Content Addressable Memories-based (TCAM-based), trie-based and TCAM-emulation. TCAM-based techniques are expensive and consume a lot of power, since they employ TCAMs in their architecture. Trie-based techniques have nondeterministic latency and external memory accesses, since they store the Forwarding Information Base (FIB) in the memory using a trie data structure. TCAM-emulation techniques commonly combine TCAMs with lower-cost circuits that handle less time-critical activities. In this thesis, the main objective is to propose an ALE architecture with fast search that addresses the main shortcomings of TCAM-based and trie-based techniques. Achieving an admissible throughput in the proposed ALE is its fundamental requirement due to the recent improvements of network systems and growth of Internet of Things (IoTs). For that matter, hardware accelerators have been adopted to achieve a high speed search. In this work, Field Programmable Gate Arrays (FPGAs) are specialized reconfigurable hardware accelerators chosen as the target platform for the ALE architecture. Five TCAM-emulation ALE architectures are proposed in this thesis: the Full-Serial, the Full-Parallel, the IP-Split, the IP-Split-Bucket and the Update-enabled IP-Split-Bucket architectures. Each architecture builds on the previous one with progressive improvements. The Full-Serial architecture employs memories to store the FIB and one comparator to perform a serial search on the FIB entries. The Full-Parallel architecture stores the FIB entries into the logical resources of the FPGA and employs a parallel search using one comparator for each FIB entry. The IP-Split architecture employs a level of decoders to avoid repetitive comparisons in the equivalent entries of the FIB. The IP-Split-Bucket architecture is an upgraded version of the previous architecture using a partitioning scheme aiming to optimize the IP-Split architecture. Finally, the Update-enabled IP-Split-Bucket supports high-update rate IP address lookup. The most efficient proposed architecture is the IP-Split-Bucket, which is a novel high-performance memory-less ALE. For a real-world FIB with 524 k IPv4 prefixes, IP-Split-Bucket achieves a throughput of 103.4M packets per second and consumes respectively 23% and 22% of the Look Up Tables (LUTs) and Flip-Flops (FFs) of a Xilinx XC7V2000T chip

    Projeto, implementação e avaliação do suporte de casamento com prefixo mais longo para IPv4/IPv6 em planos de dados programáveis multi-arquitetura

    Get PDF
    Orientador: Christian Rodolfo Esteve RothenbergDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Dentre as novas tendências em programação de dataplane dentro de SDN (Software Defined Networking) destacam-se os esforços para prover um suporte multi-plataforma dotado de alta definição das informações que são processadas pelo pipeline do plano de dados. No entanto, alguns desafios ainda persistem, como a necessidade de um plano de dados programável ou a adoção de uma abstração de programação independente de protocolo. Como forma de mitigar tais problemas, verifica-se que a Linguagem Específica de Domínio~(DSL) Programming Protocol-Independent Packet Processors~(P4) desponta como uma tendência emergente para expressar como os pacotes são processados pelo plano de dados de uma plataforma de rede programável. De modo independente e em paralelo, constata-se que o projeto OpenDataPlane~(ODP) cria um conjunto de plataformas abertas de Application Programming Interfaces~(APIs) projetado para o plano de dados de rede. Isso posto, tem-se que o Multi-Architecture Compiler System for Abstract Dataplanes~(MACSAD) surge como uma abordagem para convergir P4 e ODP em um processo de compilação convencional, arquivando a portabilidade dos aplicativos de plano de dados sem afetar as melhorias de desempenho do alvo. O MACSAD pode integrar a API do ODP e o P4, reunindo-os e definindo um plano de dados programável em um sistema de compilador unificado. Este trabalho tem como objetivo adicionar o suporte do Longest Prefix Match~(LPM) do IPv4/IPv6 ao MACSAD, integrado com as APIs do ODP e à programação P4, oferecendo recursos de planejamento de dados de alto desempenho. O suporte ao LPM proposto para o MACSAD combina o algoritmo de lookup e a biblioteca da API do ODP com o suporte à tabela MACSAD, para criar uma base de encaminhamento completa usada no processo do LPM. A implementação do IPv4 adapta o atual algoritmo de lookup do ODP para trabalhar com o MACSAD. A implementação de lookup IPv6, atualmente não suportada pelo ODP, é uma extensão do suporte IPv4 que é desenvolvido usando o mesmo algoritmo adaptado a uma chave de 128 bits. A pesquisa IPv4 e IPv6 usa uma base de árvore binária para executar o lookup do LPM. Para a avaliação de desempenho do suporte ao LPM, utilizamos uma ferramenta geradora de tráfego Network Function Performance Analyzer~(NFPA) que permite gerar diferentes tipos de tráfego no MACSAD. Cabe ainda destacar, como uma contribuição lateral deste trabalho, o desenvolvimento da ferramenta geradora de pacote BB-Gen, já com lançamento open source. Resultados experimentais mostram que é possível atingir um throughput de 10G com tamanhos de pacotes de 512 bytes ou superioresAbstract: New trends in dataplane programmability inside Software Defined Networking~(SDN) are in efforts to bring multi-platform support with a high definition of the information that is processed by the dataplane pipeline. However, some challenges are still present, as the necessity of a programmable dataplane or a protocol independent programming abstraction. The Programming Protocol-Independent Packet Processors~(P4) Domain Specific Language (DSL) is an emerging trend to express how the packets are processed by the dataplane of a programmable network platform. In parallel, OpenDataPlane~(ODP) project creates an open-source, cross-platform set of Application Programming Interfaces~(APIs) designed for the networking data plane. Multi-Architecture Compiler System for Abstract Dataplanes~(MACSAD) is an approach to converge P4 and ODP in a conventional compilation process, achieving portability of the dataplane applications without affecting the target performance improvements. MACSAD can integrate the ODP API and the P4, bringing them together and defining a programmable dataplane across multiple targets in a unified compiler system. This work aims at adding IPv4/IPv6 Longest Prefix Match~(LPM) support to MACSAD integrated with ODP APIs and P4 programmability delivering high-performance dataplane capabilities. The proposed LPM support for MACSAD combines the lookup algorithm and the ODP API library with MACSAD table support, to create a complete forwarding base used in the LPM process. The IPv4 implementation adapts the current ODP lookup algorithm to work with MACSAD. IPv6 lookup implementation, currently not supported by ODP, is an extension of the IPv4 support, developed using the same algorithm adapted to a 128-bit key. IPv4 and IPv6 lookup use a binary tree base, to perform the LPM lookup. For the performance evaluation of the LPM support, we use a traffic generator tool Network Function Performance Analyzer~(NFPA) that allows generating different types of traffic across MACSAD. A side contribution on this front we developed and released open source the BB-Gen packet crafter tool. Experimental results show that it is possible to reach a throughput of 10G with packets sizes of 512 Bytes and aboveMestradoEngenharia de ComputaçãoMestre em Engenharia Elétric

    Hardware Acceleration of Network Intrusion Detection System Using FPGA

    Get PDF
    This thesis presents new algorithms and hardware designs for Signature-based Network Intrusion Detection System (SB-NIDS) optimisation exploiting a hybrid hardwaresoftware co-designed embedded processing platform. The work describe concentrates on optimisation of a complete SB-NIDS Snort application software on a FPGA based hardware-software target rather than on the implementation of a single functional unit for hardware acceleration. Pattern Matching Hardware Accelerator (PMHA) based on Bloom filter was designed to optimise SB-NIDS performance for execution on a Xilinx MicroBlaze soft-core processor. The Bloom filter approach enables the potentially large number of network intrusion attack patterns to be efficiently represented and searched primarily using accesses to FPGA on-chip memory. The thesis demonstrates, the viability of hybrid hardware-software co-designed approach for SB-NIDS. Future work is required to investigate the effects of later generation FPGA technology and multi-core processors in order to clearly prove the benefits over conventional processor platforms for SB-NIDS. The strengths and weaknesses of the hardware accelerators and algorithms are analysed, and experimental results are examined to determine the effectiveness of the implementation. Experimental results confirm that the PMHA is capable of performing network packet analysis for gigabit rate network traffic. Experimental test results indicate that our SB-NIDS prototype implementation on relatively low clock rate embedded processing platform performance is approximately 1.7 times better than Snort executing on a general purpose processor on PC when comparing processor cycles rather than wall clock time

    Design and Evaluation of Packet Classification Systems, Doctoral Dissertation, December 2006

    Get PDF
    Although many algorithms and architectures have been proposed, the design of efficient packet classification systems remains a challenging problem. The diversity of filter specifications, the scale of filter sets, and the throughput requirements of high speed networks all contribute to the difficulty. We need to review the algorithms from a high-level point-of-view in order to advance the study. This level of understanding can lead to significant performance improvements. In this dissertation, we evaluate several existing algorithms and present several new algorithms as well. The previous evaluation results for existing algorithms are not convincing because they have not been done in a consistent way. To resolve this issue, an objective evaluation platform needs to be developed. We implement and evaluate several representative algorithms with uniform criteria. The source code and the evaluation results are both published on a web-site to provide the research community a benchmark for impartial and thorough algorithm evaluations. We propose several new algorithms to deal with the different variations of the packet classification problem. They are: (1) the Shape Shifting Trie algorithm for longest prefix matching, used in IP lookups or as a building block for general packet classification algorithms; (2) the Fast Hash Table lookup algorithm used for exact flow match; (3) the longest prefix matching algorithm using hash tables and tries, used in IP lookups or packet classification algorithms;(4) the 2D coarse-grained tuple-space search algorithm with controlled filter expansion, used for two-dimensional packet classification or as a building block for general packet classification algorithms; (5) the Adaptive Binary Cutting algorithm used for general multi-dimensional packet classification. In addition to the algorithmic solutions, we also consider the TCAM hardware solution. In particular, we address the TCAM filter update problem for general packet classification and provide an efficient algorithm. Building upon the previous work, these algorithms significantly improve the performance of packet classification systems and set a solid foundation for further study

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    High-Performance Packet Processing Engines Using Set-Associative Memory Architectures

    Get PDF
    The emergence of new optical transmission technologies has led to ultra-high Giga bits per second (Gbps) link speeds. In addition, the switch from 32-bit long IPv4 addresses to the 128-bit long IPv6 addresses is currently progressing. Both factors make it hard for new Internet routers and firewalls to keep up with wire-speed packet-processing. By packet-processing we mean three applications: packet forwarding, packet classification and deep packet inspection. In packet forwarding (PF), the router has to match the incoming packet's IP address against the forwarding table. It then directs each packet to its next hop toward its final destination. A packet classification (PC) engine examines a packet header by matching it against a database of rules, or filters, to obtain the best matching rule. Rules are associated with either an ``action'' (e.g., firewall) or a ``flow ID'' (e.g., quality of service or QoS). The last application is deep packet inspection (DPI) where the firewall has to inspect the actual packet payload for malware or network attacks. In this case, the payload is scanned against a database of rules, where each rule is either a plain text string or a regular expression. In this thesis, we introduce a family of hardware solutions that combine the above requirements. These solutions rely on a set-associative memory architecture that is called CA-RAM (Content Addressable-Random Access Memory). CA-RAM is a hardware implementation of hash tables with the property that each bucket of a hash table can be searched in one memory cycle. However, the classic hashing downsides have to be dealt with, such as collisions that lead to overflow and worst-case memory access time. The two standard solutions to the overflow problem are either to use some predefined probing (e.g., linear or quadratic) or to use multiple hash functions. We present new hash schemes that extend both aforementioned solutions to tackle the overflow problem efficiently. We show by experimenting with real IP lookup tables, synthetic packet classification rule sets and real DPI databases that our schemes outperform other previously proposed schemes
    corecore