170 research outputs found

    MR-CUDASW - GPU accelerated Smith-Waterman algorithm for medium-length (meta)genomic data

    Get PDF
    The idea of using a graphics processing unit (GPU) for more than simply graphic output purposes has been around for quite some time in scientific communities. However, it is only recently that its benefits for a range of bioinformatics and life sciences compute-intensive tasks has been recognized. This thesis investigates the possibility of improving the performance of the overlap determination stage of an Overlap Layout Consensus (OLC)-based assembler by using a GPU-based implementation of the Smith-Waterman algorithm. In this thesis an existing GPU-accelerated sequence alignment algorithm is adapted and expanded to reduce its completion time. A number of improvements and changes are made to the original software. Workload distribution, query profile construction, and thread scheduling techniques implemented by the original program are replaced by custom methods specifically designed to handle medium-length reads. Accordingly, this algorithm is the first highly parallel solution that has been specifically optimized to process medium-length nucleotide reads (DNA/RNA) from modern sequencing machines (i.e. Ion Torrent). Results show that the software reaches up to 82 GCUPS (Giga Cell Updates Per Second) on a single-GPU graphic card running on a commodity desktop hardware. As a result it is the fastest GPU-based implemen- tation of the Smith-Waterman algorithm tailored for processing medium-length nucleotide reads. Despite being designed for performing the Smith-Waterman algorithm on medium-length nucleotide sequences, this program also presents great potential for improving heterogeneous computing with CUDA-enabled GPUs in general and is expected to make contributions to other research problems that require sensitive pairwise alignment to be applied to a large number of reads. Our results show that it is possible to improve the performance of bioinformatics algorithms by taking full advantage of the compute resources of the underlying commodity hardware and further, these results are especially encouraging since GPU performance grows faster than multi-core CPUs

    High Performance Biological Pairwise Sequence Alignment: FPGA versus GPU versus Cell BE versus GPP

    Get PDF
    This paper explores the pros and cons of reconfigurable computing in the form of FPGAs for high performance efficient computing. In particular, the paper presents the results of a comparative study between three different acceleration technologies, namely, Field Programmable Gate Arrays (FPGAs), Graphics Processor Units (GPUs), and IBM’s Cell Broadband Engine (Cell BE), in the design and implementation of the widely-used Smith-Waterman pairwise sequence alignment algorithm, with general purpose processors as a base reference implementation. Comparison criteria include speed, energy consumption, and purchase and development costs. The study shows that FPGAs largely outperform all other implementation platforms on performance per watt criterion and perform better than all other platforms on performance per dollar criterion, although by a much smaller margin. Cell BE and GPU come second and third, respectively, on both performance per watt and performance per dollar criteria. In general, in order to outperform other technologies on performance per dollar criterion (using currently available hardware and development tools), FPGAs need to achieve at least two orders of magnitude speed-up compared to general-purpose processors and one order of magnitude speed-up compared to domain-specific technologies such as GPUs

    CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to its high sensitivity, the Smith-Waterman algorithm is widely used for biological database searches. Unfortunately, the quadratic time complexity of this algorithm makes it highly time-consuming. The exponential growth of biological databases further deteriorates the situation. To accelerate this algorithm, many efforts have been made to develop techniques in high performance architectures, especially the recently emerging many-core architectures and their associated programming models.</p> <p>Findings</p> <p>This paper describes the latest release of the CUDASW++ software, CUDASW++ 2.0, which makes new contributions to Smith-Waterman protein database searches using compute unified device architecture (CUDA). A parallel Smith-Waterman algorithm is proposed to further optimize the performance of CUDASW++ 1.0 based on the single instruction, multiple thread (SIMT) abstraction. For the first time, we have investigated a partitioned vectorized Smith-Waterman algorithm using CUDA based on the virtualized single instruction, multiple data (SIMD) abstraction. The optimized SIMT and the partitioned vectorized algorithms were benchmarked, and remarkably, have similar performance characteristics. CUDASW++ 2.0 achieves performance improvement over CUDASW++ 1.0 as much as 1.74 (1.72) times using the optimized SIMT algorithm and up to 1.77 (1.66) times using the partitioned vectorized algorithm, with a performance of up to 17 (30) billion cells update per second (GCUPS) on a single-GPU GeForce GTX 280 (dual-GPU GeForce GTX 295) graphics card.</p> <p>Conclusions</p> <p>CUDASW++ 2.0 is publicly available open-source software, written in CUDA and C++ programming languages. It obtains significant performance improvement over CUDASW++ 1.0 using either the optimized SIMT algorithm or the partitioned vectorized algorithm for Smith-Waterman protein database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs.</p

    Protein alignment algorithms with an efficient backtracking routine on multiple GPUs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment.</p> <p>Results</p> <p>In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable.</p> <p>Conclusions</p> <p>The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.</p

    State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms

    Get PDF
    Searching biological sequence database is a common and repeated task in bioinformatics and molecular biology. The Smith–Waterman algorithm is the most accurate method for this kind of search. Unfortunately, this algorithm is computationally demanding and the situation gets worse due to the exponential growth of biological data in the last years. For that reason, the scientific community has made great efforts to accelerate Smith–Waterman biological database searches in a wide variety of hardware platforms. We give a survey of the state-of-the-art in Smith–Waterman protein database search, focusing on four hardware architectures: central processing units, graphics processing units, field programmable gate arrays and Xeon Phi coprocessors. After briefly describing each hardware platform, we analyse temporal evolution, contributions, limitations and experimental work and the results of each implementation. Additionally, as energy efficiency is becoming more important every day, we also survey performance/power consumption works. Finally, we give our view on the future of Smith–Waterman protein searches considering next generations of hardware architectures and its upcoming technologies.Instituto de Investigación en InformáticaUniversidad Complutense de Madri

    A New Multi-threaded and Interleaving Approach to Enhance String Matching for Intrusion Detection Systems

    Get PDF
    String matching algorithms are computationally intensive operations in computer science. The algorithms find the occurrences of one or more strings patterns in a larger string or text. String matching algorithms are important for network security, biomedical applications, Web search, and social networks. Nowadays, the high network speeds and large storage capacity put a high requirement on string matching methods to perform the task in a short time. Traditionally, Aho-Corasick algorithm, which is used to find the string matches, is executed sequentially. In this paper, a new multi-threaded and interleaving approach of Aho-Corasick using graphics processing units (GPUs) is designed and implemented to achieve high-speed string matching. Compute Unified Device Architecture (CUDA) programming language is used to implement the proposed parallel version. Experimental results show that our approach achieves more than 5X speedup over the sequential and other parallel implementations. Hence, a wide range of applications can benefit from our solution to perform string matching faster than ever before

    High performance bioinformatics and computational biology on general-purpose graphics processing units

    Get PDF
    Bioinformatics and Computational Biology (BCB) is a relatively new multidisciplinary field which brings together many aspects of the fields of biology, computer science, statistics, and engineering. Bioinformatics extracts useful information from biological data and makes these more intuitive and understandable by applying principles of information sciences, while computational biology harnesses computational approaches and technologies to answer biological questions conveniently. Recent years have seen an explosion of the size of biological data at a rate which outpaces the rate of increases in the computational power of mainstream computer technologies, namely general purpose processors (GPPs). The aim of this thesis is to explore the use of off-the-shelf Graphics Processing Unit (GPU) technology in the high performance and efficient implementation of BCB applications in order to meet the demands of biological data increases at affordable cost. The thesis presents detailed design and implementations of GPU solutions for a number of BCB algorithms in two widely used BCB applications, namely biological sequence alignment and phylogenetic analysis. Biological sequence alignment can be used to determine the potential information about a newly discovered biological sequence from other well-known sequences through similarity comparison. On the other hand, phylogenetic analysis is concerned with the investigation of the evolution and relationships among organisms, and has many uses in the fields of system biology and comparative genomics. In molecular-based phylogenetic analysis, the relationship between species is estimated by inferring the common history of their genes and then phylogenetic trees are constructed to illustrate evolutionary relationships among genes and organisms. However, both biological sequence alignment and phylogenetic analysis are computationally expensive applications as their computing and memory requirements grow polynomially or even worse with the size of sequence databases. The thesis firstly presents a multi-threaded parallel design of the Smith- Waterman (SW) algorithm alongside an implementation on NVIDIA GPUs. A novel technique is put forward to solve the restriction on the length of the query sequence in previous GPU-based implementations of the SW algorithm. Based on this implementation, the difference between two main task parallelization approaches (Inter-task and Intra-task parallelization) is presented. The resulting GPU implementation matches the speed of existing GPU implementations while providing more flexibility, i.e. flexible length of sequences in real world applications. It also outperforms an equivalent GPPbased implementation by 15x-20x. After this, the thesis presents the first reported multi-threaded design and GPU implementation of the Gapped BLAST with Two-Hit method algorithm, which is widely used for aligning biological sequences heuristically. This achieved up to 3x speed-up improvements compared to the most optimised GPP implementations. The thesis then presents a multi-threaded design and GPU implementation of a Neighbor-Joining (NJ)-based method for phylogenetic tree construction and multiple sequence alignment (MSA). This achieves 8x-20x speed up compared to an equivalent GPP implementation based on the widely used ClustalW software. The NJ method however only gives one possible tree which strongly depends on the evolutionary model used. A more advanced method uses maximum likelihood (ML) for scoring phylogenies with Markov Chain Monte Carlo (MCMC)-based Bayesian inference. The latter was the subject of another multi-threaded design and GPU implementation presented in this thesis, which achieved 4x-8x speed up compared to an equivalent GPP implementation based on the widely used MrBayes software. Finally, the thesis presents a general evaluation of the designs and implementations achieved in this work as a step towards the evaluation of GPU technology in BCB computing, in the context of other computer technologies including GPPs and Field Programmable Gate Arrays (FPGA) technology
    corecore