1,017 research outputs found

    Convergent communication, sensing and localization in 6g systems: An overview of technologies, opportunities and challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    Get PDF
    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM

    Information-Theoretic Control of Multiple Sensor Platforms

    Get PDF
    This thesis is concerned with the development of a consistent, information-theoretic basis for understanding of coordination and cooperation decentralised multi-sensor multi-platform systems. Autonomous systems composed of multiple sensors and multiple platforms potentially have significant importance in applications such as defence, search and rescue mining or intelligent manufacturing. However, the effective use of multiple autonomous systems requires that an understanding be developed of the mechanisms of coordination and cooperation between component systems in pursuit of a common goal. A fundamental, quantitative, understanding of coordination and cooperation between decentralised autonomous systems is the main goal of this thesis. This thesis focuses on the problem of coordination and cooperation for teams of autonomous systems engaged in information gathering and data fusion tasks. While this is a subset of the general cooperative autonomous systems problem, it still encompasses a range of possible applications in picture compilation, navigation, searching and map building problems. The great advantage of restricting the domain of interest in this way is that an underlying mathematical model for coordination and cooperation can be based on the use of information-theoretic models of platform and sensor abilities. The information theoretic approach builds on the established principles and architecture previously developed for decentralised data fusion systems. In the decentralised control problem addressed in this thesis, each platform and sensor system is considered to be a distinct decision maker with an individual information-theoretic utility measure capturing both local objectives and the inter-dependencies among the decisions made by other members of the team. Together these information-theoretic utilities constitute the team objective. The key contributions of this thesis lie in the quantification and study of cooperative control between sensors and platforms using information as a common utility measure. In particular, * The problem of information gathering is formulated as an optimal control problem by identifying formal measures of information with utility or pay-off. * An information-theoretic utility model of coupling and coordination between decentralised decision makers is elucidated. This is used to describe how the information gathering strategies of a team of autonomous systems are coupled. * Static and dynamic information structures for team members are defined. It is shown that the use of static information structures can lead to efficient, although sub-optimal, decentralised control strategies for the team. * Significant examples in decentralised control of a team of sensors are developed. These include the multi-vehicle multi-target bearings-only tracking problem, and the area coverage or exploration problem for multiple vehicles. These examples demonstrate the range of non-trivial problems to which the theory in this thesis can be employed

    Information-Theoretic Control of Multiple Sensor Platforms

    Get PDF
    This thesis is concerned with the development of a consistent, information-theoretic basis for understanding of coordination and cooperation decentralised multi-sensor multi-platform systems. Autonomous systems composed of multiple sensors and multiple platforms potentially have significant importance in applications such as defence, search and rescue mining or intelligent manufacturing. However, the effective use of multiple autonomous systems requires that an understanding be developed of the mechanisms of coordination and cooperation between component systems in pursuit of a common goal. A fundamental, quantitative, understanding of coordination and cooperation between decentralised autonomous systems is the main goal of this thesis. This thesis focuses on the problem of coordination and cooperation for teams of autonomous systems engaged in information gathering and data fusion tasks. While this is a subset of the general cooperative autonomous systems problem, it still encompasses a range of possible applications in picture compilation, navigation, searching and map building problems. The great advantage of restricting the domain of interest in this way is that an underlying mathematical model for coordination and cooperation can be based on the use of information-theoretic models of platform and sensor abilities. The information theoretic approach builds on the established principles and architecture previously developed for decentralised data fusion systems. In the decentralised control problem addressed in this thesis, each platform and sensor system is considered to be a distinct decision maker with an individual information-theoretic utility measure capturing both local objectives and the inter-dependencies among the decisions made by other members of the team. Together these information-theoretic utilities constitute the team objective. The key contributions of this thesis lie in the quantification and study of cooperative control between sensors and platforms using information as a common utility measure. In particular, * The problem of information gathering is formulated as an optimal control problem by identifying formal measures of information with utility or pay-off. * An information-theoretic utility model of coupling and coordination between decentralised decision makers is elucidated. This is used to describe how the information gathering strategies of a team of autonomous systems are coupled. * Static and dynamic information structures for team members are defined. It is shown that the use of static information structures can lead to efficient, although sub-optimal, decentralised control strategies for the team. * Significant examples in decentralised control of a team of sensors are developed. These include the multi-vehicle multi-target bearings-only tracking problem, and the area coverage or exploration problem for multiple vehicles. These examples demonstrate the range of non-trivial problems to which the theory in this thesis can be employed

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots

    Large-area visually augmented navigation for autonomous underwater vehicles

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science & Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2005This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting the inertial sensor information that is routinely available on such platforms. We adopt a systems-level approach exploiting the complementary aspects of inertial sensing and visual perception from a calibrated pose-instrumented platform. This systems-level strategy yields a robust solution to underwater imaging that overcomes many of the unique challenges of a marine environment (e.g., unstructured terrain, low-overlap imagery, moving light source). Our large-area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical form. This sparsity allows for efficient O(n) update complexity in the number of images composing the view-based map by utilizing recent multilevel relaxation techniques. We show that our algorithmic formulation is inherently sparse unlike other feature-based canonical SLAM algorithms, which impose sparseness via pruning approximations. In particular, we investigate the sparsification methodology employed by sparse extended information filters (SEIFs) and offer new insight as to why, and how, its approximation can lead to inconsistencies in the estimated state errors. Lastly, we present a novel algorithm for efficiently extracting consistent marginal covariances useful for data association from the information matrix. In summary, this thesis advances the current state-of-the-art in underwater visual navigation by demonstrating end-to-end automatic processing of the largest visually navigated dataset to date using data collected from a survey of the RMS Titanic (path length over 3 km and 3100 m2 of mapped area). This accomplishment embodies the summed contributions of this thesis to several current SLAM research issues including scalability, 6 degree of freedom motion, unstructured environments, and visual perception.This work was funded in part by the CenSSIS ERC of the National Science Foundation under grant EEC-9986821, in part by the Woods Hole Oceanographic Institution through a grant from the Penzance Foundation, and in part by a NDSEG Fellowship awarded through the Department of Defense

    Mutual information-based gradient-ascent control for distributed robotics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 167-179).This thesis presents the derivation, analysis, and implementation of a novel class of decentralized mutual information-based gradient-ascent controllers that continuously move robots equipped with sensors to better observe their environment. We begin with the fundamental problem of deploying a single ground robot equipped with a range sensor and tasked to build an occupancy grid map. The desired explorative behaviors of the robot for occupancy grid mapping highlight the correlation between the information content and the spatial realization of the robot's range measurements. We prove that any occupancy grid controller tasked to maximize a mutual information reward function is eventually attracted to unexplored space, i.e., areas of highest uncertainty. We show that mutual information encodes geometric relationships that are fundamental to robot control and yields geometrically relevant reward surfaces on which robots can navigate. Taking inspiration from geometric-based approaches to distributed robot coordination, we show that many multi-robot inference tasks can be cast in terms of an optimization problem. This optimization problem defines the task of minimizing the conditional entropy associated with the robots' inferred beliefs of the environment, which is equivalent to maximizing the mutual information between the environment state and the robots' next joint observation. Given simple robot dynamics and few probabilistic assumptions, none of which involve Gaussianity, we derive a gradientascent solution approach to these optimization problems that is convergent between sensor observations and locally optimal. More formally, we invoke LaSalle's Invariance Principle to prove that, given enough time between consecutive joint observations, robots following the gradient of mutual information will converge to goal positions that locally maximize the expected information gain resulting from the next observation. We show that the algorithmic implementation of the generalized gradient-ascent controller is not readily distributed among multiple robots, and thus sample-based methods are introduced to distributively approximate the likelihoods of the robots' joint observations. Not only are the involved non-parametric representations compatible with any type of Bayesian filter, but the computational complexities of the resulting decentralized controllers are independent with respect to the number of robots. Concerning the distributed approximations, we give two example consensus-based algorithms that run on an undirected network graph. The first consensus-based algorithm approximates discrete measurement probabilities, while the second approximates continuous likelihood distributions. We show that these anytime approximations provably converge to the correct values on a static and connected network graph without knowledge of the number of robots in the network or the corresponding graph's topology. Lastly, we incorporate the resulting consensus-based algorithms into both a hardware system and a simulation environment to allow for decentralized controller evaluation under non-ideal network settings. For the hardware experiments, the task is to infer the state of a bounded, planar environment by deploying five quadrotor flying robots with simulated sensors in both indoor and outdoor settings. For the numerical simulations, Monte Carlo-based analyses are performed for 100 robots, where each robot is simulated on an independent computer node within a computer cluster system. Simulations are also performed for 1000 robots using a single workstation computer equipped with a multicore GPU-enabled graphics card. The results from both the hardware experiments and numerical simulations validate our theoretical and computational claims throughout the thesis.by Brian John Julian.Ph.D
    corecore