4,146 research outputs found

    CYCLOSA: Decentralizing Private Web Search Through SGX-Based Browser Extensions

    Get PDF
    By regularly querying Web search engines, users (unconsciously) disclose large amounts of their personal data as part of their search queries, among which some might reveal sensitive information (e.g. health issues, sexual, political or religious preferences). Several solutions exist to allow users querying search engines while improving privacy protection. However, these solutions suffer from a number of limitations: some are subject to user re-identification attacks, while others lack scalability or are unable to provide accurate results. This paper presents CYCLOSA, a secure, scalable and accurate private Web search solution. CYCLOSA improves security by relying on trusted execution environments (TEEs) as provided by Intel SGX. Further, CYCLOSA proposes a novel adaptive privacy protection solution that reduces the risk of user re- identification. CYCLOSA sends fake queries to the search engine and dynamically adapts their count according to the sensitivity of the user query. In addition, CYCLOSA meets scalability as it is fully decentralized, spreading the load for distributing fake queries among other nodes. Finally, CYCLOSA achieves accuracy of Web search as it handles the real query and the fake queries separately, in contrast to other existing solutions that mix fake and real query results

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Scalable multi-hop routing in wireless networks

    Get PDF
    • …
    corecore