8,465 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Online Tensor Methods for Learning Latent Variable Models

    Get PDF
    We introduce an online tensor decomposition based approach for two latent variable modeling problems namely, (1) community detection, in which we learn the latent communities that the social actors in social networks belong to, and (2) topic modeling, in which we infer hidden topics of text articles. We consider decomposition of moment tensors using stochastic gradient descent. We conduct optimization of multilinear operations in SGD and avoid directly forming the tensors, to save computational and storage costs. We present optimized algorithm in two platforms. Our GPU-based implementation exploits the parallelism of SIMD architectures to allow for maximum speed-up by a careful optimization of storage and data transfer, whereas our CPU-based implementation uses efficient sparse matrix computations and is suitable for large sparse datasets. For the community detection problem, we demonstrate accuracy and computational efficiency on Facebook, Yelp and DBLP datasets, and for the topic modeling problem, we also demonstrate good performance on the New York Times dataset. We compare our results to the state-of-the-art algorithms such as the variational method, and report a gain of accuracy and a gain of several orders of magnitude in the execution time.Comment: JMLR 201

    Community Detection in Networks with Node Attributes

    Full text link
    Community detection algorithms are fundamental tools that allow us to uncover organizational principles in networks. When detecting communities, there are two possible sources of information one can use: the network structure, and the features and attributes of nodes. Even though communities form around nodes that have common edges and common attributes, typically, algorithms have only focused on one of these two data modalities: community detection algorithms traditionally focus only on the network structure, while clustering algorithms mostly consider only node attributes. In this paper, we develop Communities from Edge Structure and Node Attributes (CESNA), an accurate and scalable algorithm for detecting overlapping communities in networks with node attributes. CESNA statistically models the interaction between the network structure and the node attributes, which leads to more accurate community detection as well as improved robustness in the presence of noise in the network structure. CESNA has a linear runtime in the network size and is able to process networks an order of magnitude larger than comparable approaches. Last, CESNA also helps with the interpretation of detected communities by finding relevant node attributes for each community.Comment: Published in the proceedings of IEEE ICDM '1

    Fraud detection for online banking for scalable and distributed data

    Get PDF
    Online fraud causes billions of dollars in losses for banks. Therefore, online banking fraud detection is an important field of study. However, there are many challenges in conducting research in fraud detection. One of the constraints is due to unavailability of bank datasets for research or the required characteristics of the attributes of the data are not available. Numeric data usually provides better performance for machine learning algorithms. Most transaction data however have categorical, or nominal features as well. Moreover, some platforms such as Apache Spark only recognizes numeric data. So, there is a need to use techniques e.g. One-hot encoding (OHE) to transform categorical features to numerical features, however OHE has challenges including the sparseness of transformed data and that the distinct values of an attribute are not always known in advance. Efficient feature engineering can improve the algorithm’s performance but usually requires detailed domain knowledge to identify correct features. Techniques like Ripple Down Rules (RDR) are suitable for fraud detection because of their low maintenance and incremental learning features. However, high classification accuracy on mixed datasets, especially for scalable data is challenging. Evaluation of RDR on distributed platforms is also challenging as it is not available on these platforms. The thesis proposes the following solutions to these challenges: • We developed a technique Highly Correlated Rule Based Uniformly Distribution (HCRUD) to generate highly correlated rule-based uniformly-distributed synthetic data. • We developed a technique One-hot Encoded Extended Compact (OHE-EC) to transform categorical features to numeric features by compacting sparse-data even if all distinct values are unknown. • We developed a technique Feature Engineering and Compact Unified Expressions (FECUE) to improve model efficiency through feature engineering where the domain of the data is not known in advance. • A Unified Expression RDR fraud deduction technique (UE-RDR) for Big data has been proposed and evaluated on the Spark platform. Empirical tests were executed on multi-node Hadoop cluster using well-known classifiers on bank data, synthetic bank datasets and publicly available datasets from UCI repository. These evaluations demonstrated substantial improvements in terms of classification accuracy, ruleset compactness and execution speed.Doctor of Philosoph

    A Survey on Soft Subspace Clustering

    Full text link
    Subspace clustering (SC) is a promising clustering technology to identify clusters based on their associations with subspaces in high dimensional spaces. SC can be classified into hard subspace clustering (HSC) and soft subspace clustering (SSC). While HSC algorithms have been extensively studied and well accepted by the scientific community, SSC algorithms are relatively new but gaining more attention in recent years due to better adaptability. In the paper, a comprehensive survey on existing SSC algorithms and the recent development are presented. The SSC algorithms are classified systematically into three main categories, namely, conventional SSC (CSSC), independent SSC (ISSC) and extended SSC (XSSC). The characteristics of these algorithms are highlighted and the potential future development of SSC is also discussed.Comment: This paper has been published in Information Sciences Journal in 201
    corecore