7,453 research outputs found

    A Survey on Forensics and Compliance Auditing for Critical Infrastructure Protection

    Get PDF
    The broadening dependency and reliance that modern societies have on essential services provided by Critical Infrastructures is increasing the relevance of their trustworthiness. However, Critical Infrastructures are attractive targets for cyberattacks, due to the potential for considerable impact, not just at the economic level but also in terms of physical damage and even loss of human life. Complementing traditional security mechanisms, forensics and compliance audit processes play an important role in ensuring Critical Infrastructure trustworthiness. Compliance auditing contributes to checking if security measures are in place and compliant with standards and internal policies. Forensics assist the investigation of past security incidents. Since these two areas significantly overlap, in terms of data sources, tools and techniques, they can be merged into unified Forensics and Compliance Auditing (FCA) frameworks. In this paper, we survey the latest developments, methodologies, challenges, and solutions addressing forensics and compliance auditing in the scope of Critical Infrastructure Protection. This survey focuses on relevant contributions, capable of tackling the requirements imposed by massively distributed and complex Industrial Automation and Control Systems, in terms of handling large volumes of heterogeneous data (that can be noisy, ambiguous, and redundant) for analytic purposes, with adequate performance and reliability. The achieved results produced a taxonomy in the field of FCA whose key categories denote the relevant topics in the literature. Also, the collected knowledge resulted in the establishment of a reference FCA architecture, proposed as a generic template for a converged platform. These results are intended to guide future research on forensics and compliance auditing for Critical Infrastructure Protection.info:eu-repo/semantics/publishedVersio

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Computational Analyses of Metagenomic Data

    Get PDF
    Metagenomics studies the collective microbial genomes extracted from a particular environment without requiring the culturing or isolation of individual genomes, addressing questions revolving around the composition, functionality, and dynamics of microbial communities. The intrinsic complexity of metagenomic data and the diversity of applications call for efficient and accurate computational methods in data handling. In this thesis, I present three primary projects that collectively focus on the computational analysis of metagenomic data, each addressing a distinct topic. In the first project, I designed and implemented an algorithm named Mapbin for reference-free genomic binning of metagenomic assemblies. Binning aims to group a mixture of genomic fragments based on their genome origin. Mapbin enhances binning results by building a multilayer network that combines the initial binning, assembly graph, and read-pairing information from paired-end sequencing data. The network is further partitioned by the community-detection algorithm, Infomap, to yield a new binning result. Mapbin was tested on multiple simulated and real datasets. The results indicated an overall improvement in the common binning quality metrics. The second and third projects are both derived from ImMiGeNe, a collaborative and multidisciplinary study investigating the interplay between gut microbiota, host genetics, and immunity in stem-cell transplantation (SCT) patients. In the second project, I conducted microbiome analyses for the metagenomic data. The workflow included the removal of contaminant reads and multiple taxonomic and functional profiling. The results revealed that the SCT recipients' samples yielded significantly fewer reads with heavy contamination of the host DNA, and their microbiomes displayed evident signs of dysbiosis. Finally, I discussed several inherent challenges posed by extremely low levels of target DNA and high levels of contamination in the recipient samples, which cannot be rectified solely through bioinformatics approaches. The primary goal of the third project is to design a set of primers that can be used to cover bacterial flagellin genes present in the human gut microbiota. Considering the notable diversity of flagellins, I incorporated a method to select representative bacterial flagellin gene sequences, a heuristic approach based on established primer design methods to generate a degenerate primer set, and a selection method to filter genes unlikely to occur in the human gut microbiome. As a result, I successfully curated a reduced yet representative set of primers that would be practical for experimental implementation

    Genomic investigation of antimicrobial resistant enterococci

    Get PDF
    Enterococcus faecium and Enterococcus faecalis are important causes of healthcare-associated infections in immunocompromised patients. Enterococci thrive in modern healthcare settings, being able to resist killing by a range of antimicrobial agents, persist in the environment, and adapt to changing circumstances. In Scotland, rates of vancomycin resistant E. faecium (VREfm) have risen almost 150% in recent years leaving few treatment options and challenging healthcare delivery. Resistance to the last line agent linezolid has also been detected in E. faecalis. Whole genome sequencing (WGS) allows investigation of the population structure and transmission of microorganisms, and identification of antimicrobial resistance mechanisms. The aim of this thesis was to use WGS to understand the molecular epidemiology of antimicrobial resistant enterococci from human healthcare settings in Scotland. Analysis of some of the earliest identified Scottish linezolid-resistant E. faecalis showed the resistance mechanism, optrA, was present in unrelated lineages and in different genetic elements, suggesting multiple introductions from a larger reservoir. To inform transmission investigations, within-patient diversity of VREfm was explored showing ~30% of patients carried multiple lineages and identifying a within-patient diversity threshold for transmission studies. WGS was then applied to a large nosocomial outbreak of VREfm, highlighting a complex network of related variants across multiple wards. Having examined within-hospital transmission, the role of regional relationships was investigated which showed that VREfm in Scotland is driven by multiple clones transmitted within individual Health Boards with occasional spread between regions. The most common lineage in the national collection (ST203) was estimated to have been present in Scotland since around 2005, highlighting its persistence in the face of increasing infection prevention and control measures. This thesis provides a starting point for genomic surveillance of enterococci in Scotland, and a basis for interventional studies aiming to reduce the burden of enterococcal infections."This work was supported by the Chief Scientist Office (Scotland) [grant number SIRN/10]; the Wellcome Trust [grant numbers 105621/Z/14/Z, 206194]; and the BBSRC [grant number BB/S019669/1]."—Fundin

    Configuration Management of Distributed Systems over Unreliable and Hostile Networks

    Get PDF
    Economic incentives of large criminal profits and the threat of legal consequences have pushed criminals to continuously improve their malware, especially command and control channels. This thesis applied concepts from successful malware command and control to explore the survivability and resilience of benign configuration management systems. This work expands on existing stage models of malware life cycle to contribute a new model for identifying malware concepts applicable to benign configuration management. The Hidden Master architecture is a contribution to master-agent network communication. In the Hidden Master architecture, communication between master and agent is asynchronous and can operate trough intermediate nodes. This protects the master secret key, which gives full control of all computers participating in configuration management. Multiple improvements to idempotent configuration were proposed, including the definition of the minimal base resource dependency model, simplified resource revalidation and the use of imperative general purpose language for defining idempotent configuration. Following the constructive research approach, the improvements to configuration management were designed into two prototypes. This allowed validation in laboratory testing, in two case studies and in expert interviews. In laboratory testing, the Hidden Master prototype was more resilient than leading configuration management tools in high load and low memory conditions, and against packet loss and corruption. Only the research prototype was adaptable to a network without stable topology due to the asynchronous nature of the Hidden Master architecture. The main case study used the research prototype in a complex environment to deploy a multi-room, authenticated audiovisual system for a client of an organization deploying the configuration. The case studies indicated that imperative general purpose language can be used for idempotent configuration in real life, for defining new configurations in unexpected situations using the base resources, and abstracting those using standard language features; and that such a system seems easy to learn. Potential business benefits were identified and evaluated using individual semistructured expert interviews. Respondents agreed that the models and the Hidden Master architecture could reduce costs and risks, improve developer productivity and allow faster time-to-market. Protection of master secret keys and the reduced need for incident response were seen as key drivers for improved security. Low-cost geographic scaling and leveraging file serving capabilities of commodity servers were seen to improve scaling and resiliency. Respondents identified jurisdictional legal limitations to encryption and requirements for cloud operator auditing as factors potentially limiting the full use of some concepts

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Location Reference Recognition from Texts: A Survey and Comparison

    Full text link
    A vast amount of location information exists in unstructured texts, such as social media posts, news stories, scientific articles, web pages, travel blogs, and historical archives. Geoparsing refers to recognizing location references from texts and identifying their geospatial representations. While geoparsing can benefit many domains, a summary of its specific applications is still missing. Further, there is a lack of a comprehensive review and comparison of existing approaches for location reference recognition, which is the first and core step of geoparsing. To fill these research gaps, this review first summarizes seven typical application domains of geoparsing: geographic information retrieval, disaster management, disease surveillance, traffic management, spatial humanities, tourism management, and crime management. We then review existing approaches for location reference recognition by categorizing these approaches into four groups based on their underlying functional principle: rule-based, gazetteer matching–based, statistical learning-–based, and hybrid approaches. Next, we thoroughly evaluate the correctness and computational efficiency of the 27 most widely used approaches for location reference recognition based on 26 public datasets with different types of texts (e.g., social media posts and news stories) containing 39,736 location references worldwide. Results from this thorough evaluation can help inform future methodological developments and can help guide the selection of proper approaches based on application needs

    Proceedings of the 10th International congress on architectural technology (ICAT 2024): architectural technology transformation.

    Get PDF
    The profession of architectural technology is influential in the transformation of the built environment regionally, nationally, and internationally. The congress provides a platform for industry, educators, researchers, and the next generation of built environment students and professionals to showcase where their influence is transforming the built environment through novel ideas, businesses, leadership, innovation, digital transformation, research and development, and sustainable forward-thinking technological and construction assembly design

    Driving venture capital funding efficiencies through data driven models. Why is this important and what are its implications for the startup ecosystem?

    Get PDF
    This thesis aims to test whether data models can fit the venture capital funding process better, and if they do fit, can they help improve the venture capital funding efficiency? Based on the reported results, venture capitalists can only see returns in 20% of their investments. The thesis argues that it is essential to help venture capital investment as it can help drive economic growth through investments in innovation. The thesis considers four startup scenarios and the related investment factors. The scenarios are a funded artificial intelligence startup seeking follow-on funding, a new startup seeking first funding, the survivability of a sustainability-focused startup, and the importance of patents for exit. Patents are a proxy for innovation in this thesis. Through quantitative analysis using generalized linear models, logit regressions, and t-tests, the thesis can establish that data models can identify the relative significance of funding factors. Once the factor significance is established, it can be deployed in a model. Building the machine learning model has been considered outside the scope of this thesis. A mix of academic and real-world research has been used for the data analysis of this thesis. Accelerators and venture capitalists also used some of the results to improve their own processes. Many of the models have shifted from a prediction to factor significance. This thesis implies that it could help venture capitalists plan for a 10% efficiency improvement. From an academic perspective, this study focuses on the entire life of a startup, from the first funding stage to the exit. It also links the startup ecosystem with economic development. Two additional factors from the study are the regional perspective of funding differences between Asia, Europe, and the US and that this study would include the recent economic sentiment. The impact of the funding slowdown has been measured through a focus on first funding and longitudinal validations of the data decision before the slowdown. Based on the results of the thesis, data models are a credible alternative and show significant correlations between returns and factors. It is advisable for a venture capitalist to consider these
    • …
    corecore