353 research outputs found

    DiffNodesets: An Efficient Structure for Fast Mining Frequent Itemsets

    Full text link
    Mining frequent itemsets is an essential problem in data mining and plays an important role in many data mining applications. In recent years, some itemset representations based on node sets have been proposed, which have shown to be very efficient for mining frequent itemsets. In this paper, we propose DiffNodeset, a novel and more efficient itemset representation, for mining frequent itemsets. Based on the DiffNodeset structure, we present an efficient algorithm, named dFIN, to mining frequent itemsets. To achieve high efficiency, dFIN finds frequent itemsets using a set-enumeration tree with a hybrid search strategy and directly enumerates frequent itemsets without candidate generation under some case. For evaluating the performance of dFIN, we have conduct extensive experiments to compare it against with existing leading algorithms on a variety of real and synthetic datasets. The experimental results show that dFIN is significantly faster than these leading algorithms.Comment: 22 pages, 13 figure

    Item-centric mining of frequent patterns from big uncertain data

    Get PDF
    Item-centric mining of frequent patterns from big uncertain dat

    Comparison of deposition methods of ZnO thin film on flexible substrate

    Get PDF
    This paper reports the effect of the different deposition methods towards the ZnO nanostructure crystal quality and film thickness on the polyimide substrate. The ZnO film has been deposited by using the spray pyrolysis technique, sol-gel and RF Sputtering. Different methods give a different nanostructure of the ZnO thin film. Sol gel methods, results of nanoflowers ZnO thin film with the thickness of thin film is 600nm. It also produces the best of the piezoelectric effect in term of electrical performance, which is 5.0 V and 12 MHz of frequency which is higher than other frequency obtained by spray pyrolysis and RF sputtering

    New Approaches to Frequent and Incremental Frequent Pattern Mining

    Full text link
    Data Mining (DM) is a process for extracting interesting patterns from large volumes of data. It is one of the crucial steps in Knowledge Discovery in Databases (KDD). It involves various data mining methods that mainly fall into predictive and descriptive models. Descriptive models look for patterns, rules, relationships and associations within data. One of the descriptive methods is association rule analysis, which represents co-occurrence of items or events. Association rules are commonly used in market basket analysis. An association rule is in the form of X ā†’ Y and it shows that X and Y co-occur with a given level of support and conļ¬dence. Association rule mining is a common technique used in discovering interesting frequent patterns in large datasets acquired in various application domains. Having petabytes of data ļ¬nding its way into data storages in perhaps every day, made many researchers look for eļ¬ƒcient methods for analyzing these large datasets. Many algorithms have been proposed for searching for frequent patterns. The search space combinatorically explodes as the size of the source data increases. Simply using more powerful computers, or even super-computers to handle ever-increasing size of large data sets is not suļ¬ƒcient. Hence, incremental algorithms have been developed and used to improve the eļ¬ƒciency of frequent pattern mining. One of the challenges of frequent itemset mining is long running times of the algorithms. Two major costs of long running times of frequent itemset mining are due to the number of database scans and the number of candidates generated (the latter one requires memory, and the more the number of candidates there are the more memory space is needed. When the candidates do not ļ¬t in memory then page swapping will occur which will increase the running time of the algorithms). In this dissertation we propose a new implementation of Apriori algorithm, NCLAT (Near Candidate-less Apriori with Tidlists), which scans the database only once and creates candidates only for level one (1-itemsets) which is equivalent to the total number of unique items in the database. In addition, we also show the results of choice of data structures used whether they are probabilistic or not, whether the datasets are horizontal or vertical, how counting is done, whether the algorithms are computed single or parallel way. We implement, explore and devise incremental algorithm UWEP with single as well as parallel computation. We have also cleaned a minor bug in UWEP and created a more eļ¬ƒcient version UWEP2, which reduces the number of candidates created and the number of database scans. We have run all of our tests against three datasets with diļ¬€erent features for diļ¬€erent minimum support levels. We show both frequent and incremental frequent itemset mining implementation test results and comparison to each other. While there has been a lot of work done on frequent itemset mining on structured data, very little work has been done on the unstructured data. So, we have created a new hybrid pattern search algorithm, Double-Hash, which performed better for all of our test scenarios than the known pattern search algorithms. Double-Hash can potentially be used in frequent itemset mining on unstructured data in the future. We will be presenting our work and test results on this as well

    A support-ordered trie for fast frequent itemset discovery

    Get PDF

    Implementation and analysis of apriori algorithm for data mining

    Full text link
    Data mining represents the process of extracting interesting and previously unknown knowledge from data. In this thesis we address the important data mining problem of discovering association rules. An association rule expresses the dependence of a set of attribute-value pairs, also called items, upon another set of items; We also report on various implementation techniques for the well-known Apriori Algorithm and their time complexity
    • ā€¦
    corecore