3,405 research outputs found

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    Graph Kernels via Functional Embedding

    Full text link
    We propose a representation of graph as a functional object derived from the power iteration of the underlying adjacency matrix. The proposed functional representation is a graph invariant, i.e., the functional remains unchanged under any reordering of the vertices. This property eliminates the difficulty of handling exponentially many isomorphic forms. Bhattacharyya kernel constructed between these functionals significantly outperforms the state-of-the-art graph kernels on 3 out of the 4 standard benchmark graph classification datasets, demonstrating the superiority of our approach. The proposed methodology is simple and runs in time linear in the number of edges, which makes our kernel more efficient and scalable compared to many widely adopted graph kernels with running time cubic in the number of vertices

    Dimensionality of social networks using motifs and eigenvalues

    Full text link
    We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an mm-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when mm scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution.Comment: 26 page
    • …
    corecore