7 research outputs found

    Resilient routing in the internet

    Get PDF
    Although it is widely known that the Internet is not prone to random failures, unplanned failures due to attacks can be very damaging. This prevents many organisations from deploying beneficial operations through the Internet. In general, the data is delivered from a source to a destination via a series of routers (i.e routing path). These routers employ routing protocols to compute best paths based on routing information they possess. However, when a failure occurs, the routers must re-construct their routing tables, which may take several seconds to complete. Evidently, most losses occur during this period. IP Fast Re-Route (IPFRR), Multi-Topology (MT) routing, and overlays are examples of solutions proposed to handle network failures. These techniques alleviate the packet losses to different extents, yet none have provided optimal solutions. This thesis focuses on identifying the fundamental routing problem due to convergence process. It describes the mechanisms of each existing technique as well as its pros and cons. Furthermore, it presents new techniques for fast re-routing as follows. Enhanced Loop-Free Alternates (E-LFAs) increase the repair coverage of the existing techniques, Loop-Free Alternates (LFAs). In addition, two techniques namely, Full Fast Failure Recovery (F3R) and fast re-route using Alternate Next Hop Counters (ANHC), offer full protection against any single link failures. Nevertheless, the former technique requires significantly higher computational overheads and incurs longer backup routes. Both techniques are proved to be complete and correct while ANHC neither requires any major modifications to the traditional routing paradigm nor incurs significant overheads. Furthermore, in the presence of failures, ANHC does not jeopardise other operable parts of the network. As emerging applications require higher reliability, multiple failures scenarios cannot be ignored. Most existing fast re-route techniques are able to handle only single or dual failures cases. This thesis provides an insight on a novel approach known as Packet Re-cycling (PR), which is capable of handling any number of failures in an oriented network. That is, packets can be forwarded successfully as long as a path between a source and a destination is available. Since the Internet-based services and applications continue to advance, improving the network resilience will be a challenging research topic for the decades to come

    Using GRASP and GA to design resilient and cost-effective IP/MPLS networks

    Get PDF
    The main objective of this thesis is to find good quality solutions for representative instances of the problem of designing a resilient and low cost IP/MPLS network, to be deployed over an existing optical transport network. This research is motivated by two complementary real-world application cases, which comprise the most important commercial and academic networks of Uruguay. To achieve this goal, we performed an exhaustive analysis of existing models and technologies. From all of them we took elements that were contrasted with the particular requirements of our counterparts. We highlight among these requirements, the need of getting solutions transparently implementable over a heterogeneous network environment, which limit us to use widely standardized features of related technologies. We decided to create new models more suitable to fit these needs. These models are intrinsically hard to solve (NP-Hard). Thus we developed metaheuristic based algorithms to find solutions to these real-world instances. Evolutionary Algorithms and Greedy Randomized Adaptive Search Procedures obtained the best results. As it usually happens, real-world planning problems are surrounded by uncertainty. Therefore, we have worked closely with our counterparts to reduce the fuzziness upon data to a set of representative cases. They were combined with different strategies of design to get to scenarios, which were translated into instances of these problems. Finally, the algorithms were fed with this information, and from their outcome we derived our results and conclusions

    Improving end-to-end availability using overlay networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2005.Includes bibliographical references (p. 139-150).The end-to-end availability of Internet services is between two and three orders of magnitude worse than other important engineered systems, including the US airline system, the 911 emergency response system, and the US public telephone system. This dissertation explores three systems designed to mask Internet failures, and, through a study of three years of data collected on a 31-site testbed, why these failures happen and how effectively they can be masked. A core aspect of many of the failures that interrupt end-to-end communication is that they fall outside the expected domain of well-behaved network failures. Many traditional techniques cope with link and router failures; as a result, the remaining failures are those caused by software and hardware bugs, misconfiguration, malice, or the inability of current routing systems to cope with persistent congestion.The effects of these failures are exacerbated because Internet services depend upon the proper functioning of many components-wide-area routing, access links, the domain name system, and the servers themselves-and a failure in any of them can prove disastrous to the proper functioning of the service. This dissertation describes three complementary systems to increase Internet availability in the face of such failures. Each system builds upon the idea of an overlay network, a network created dynamically between a group of cooperating Internet hosts. The first two systems, Resilient Overlay Networks (RON) and Multi-homed Overlay Networks (MONET) determine whether the Internet path between two hosts is working on an end-to-end basis. Both systems exploit the considerable redundancy available in the underlying Internet to find failure-disjoint paths between nodes, and forward traffic along a working path. RON is able to avoid 50% of the Internet outages that interrupt communication between a small group of communicating nodes.MONET is more aggressive, combining an overlay network of Web proxies with explicitly engineered redundant links to the Internet to also mask client access link failures. Eighteen months of measurements from a six-site deployment of MONET show that it increases a client's ability to access working Web sites by nearly an order of magnitude. Where RON and MONET combat accidental failures, the Mayday system guards against denial- of-service attacks by surrounding a vulnerable Internet server with a ring of filtering routers. Mayday then uses a set of overlay nodes to act as mediators between the service and its clients, permitting only properly authenticated traffic to reach the server.by David Godbe Andersen.Ph.D

    ON MULTIMEDIA CONTENT DELIVERY AND MULTICASTING

    Get PDF
    Multimedia content now contribute to a huge amount of the Internet traffic due to the popularity and availability of anytime anywhere Internet connection. Unlike the circuit-switched telephone network - in which necessary resources are reserved for communication between two parties at the time the connection is established, a packet-switched network, like the Internet, only guarantees the reachability when the connection between two parties is established. In other words, the end-to-end delay and available bandwidth between two hosts depend on the amount of traffic on the network. The communication paths between the participating hosts are also determined by the routing policies and hence are not under control of the participating hosts. Hence how to improve the performance of delivering multimedia content on the Internet has become an interesting research topic.In this dissertation, we consider the problem of delivering multimedia contents using multicast wherein a group of participants are participating in the same com- munication session. We assume the networks are flexible such that the end hosts can specify the communication paths. A few examples of this type of networks are overlay networks and IPv6 network with source routing support. This problem is addressed from both routing and network traffic perspectives.First, we assume a two-layer approach which includes a well-provisioned service overlay network and the regular Internet. The participants in the multimedia group communication can take the advantage of the service overlay network by connecting to the nodes in the service overlay network through the Internet. We consider two major assignment problems - Server and Client Assignment Problem (SCAP, Client- Server model) and Client Assignment Problem (CAP, Peer-to-Peer model) as well as several variants of these problems. These problems are NP-hard and we have developed polynomial-time heuristic algorithms to assign the participants to appropriate service nodes such that some real-time constraint(s) are satisfied and the number of service nodes involved are minimal. Integer programming (IP) models for solving these problems are also developed for performance evaluation purpose. Empirical results show that the solution quality of the proposed algorithms compares favorably with the optimal ones obtained from the execution of IP models, while keeping the execution times significantly low.We have also considered the Multi-stream Multi-source Multicast Routing Prob- lem ( MMMRP). Given a network and a set of multicast sessions, each with one or more sources and multiple destinations. The goal of MMMRP is to determine mul- tiple multicast tree for these multicast sessions on the given network in such a way that the overall residual bandwidth on the links that are shared among the trees is maximized. We prove that MMMRP is NP-hard and apart from providing an IP formulation, we have also provided a heuristic algorithm MMForests which runs in polynomial-time. We compared and contrasted the performance of MMMRP with known algorithms for the multicast tree packing problem. Our exhaustive empirical evaluations show that our heuristic has a very low execution-time while achieving the optimal residual bandwidth. In addition, our heuristic is very scalable as it is able to produce results for networks with thousands of nodes, unlike the other ones which are based on Steiner tree heuristics

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    D-STEM: a Design led approach to STEM innovation

    Get PDF
    Advances in the Science, Technology, Engineering and Maths (STEM) disciplines offer opportunities for designers to propose and make products with advanced, enhanced and engineered properties and functionalities. In turn, these advanced characteristics are becoming increasingly necessary as resources become ever more strained through 21st century demands, such as ageing populations, connected communities, depleting raw materials, waste management and energy supply. We need to make things that are smarter, make our lives easier, better and simpler. The products of tomorrow need to do more with less. It is recognised that STEM subjects need Design to translate and realise their full value to the economy and that Design’s role is greater than being a creator of objects. The issue is how to maximize the potential for exploiting opportunities offered by STEM developments and how best to enable designers to strengthen their position within the innovation ecosystem as active agents of change. As a society, we need designers able to navigate emerging developments from the STEM community to a level that enables understanding and knowledge of the new material properties, the skill set to facilitate absorption into the design ‘toolbox’ and the agility to identify, manage, contextualise and influence innovation opportunities emerging from STEM developments. This paper proposes the blueprint for a new design led approach to STEM innovation that begins to redefine studio culture for the 21st Century

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore