2,630 research outputs found

    High performance deep packet inspection on multi-core platform

    Get PDF
    Deep packet inspection (DPI) provides the ability to perform quality of service (QoS) and Intrusion Detection on network packets. But since the explosive growth of Internet, performance and scalability issues have been raised due to the gap between network and end-system speeds. This article describles how a desirable DPI system with multi-gigabits throughput and good scalability should be like by exploiting parallelism on network interface card, network stack and user applications. Connection-based parallelism, affinity-based scheduling and lock-free data structure are the main technologies introduced to alleviate the performance and scalability issues. A common DPI application L7-Filter is used as an example to illustrate the applicaiton level parallelism

    A dynamically reconfigurable pattern matcher for regular expressions on FPGA

    Get PDF
    In this article we describe how to expand a partially dynamic reconfig- urable pattern matcher for regular expressions presented in previous work by Di- vyasree and Rajashekar [2]. The resulting, extended, pattern matcher is fully dynamically reconfigurable. First, the design is adapted for use with parameterisable configurations, a method for Dynamic Circuit Specialization. Using parameteris- able configurations allows us to achieve the same area gains as the hand crafted reconfigurable design, with the benefit that parameterisable configurations can be applied automatically. This results in a design that is more easily adaptable to spe- cific applications and allows for an easier design exploration. Additionally, the pa- rameterisable configuration implementation is also generated automatically, which greatly reduces the design overhead of using dynamic reconfiguration. Secondly, we propose a number of expansions to the original design to overcome several limitations in the original design that constrain the dynamic reconfigurability of the pattern matcher. We propose two different solutions to dynamically change the character that is matched in a certain block. The resulting pattern matcher, after these changes, is fully dynamically reconfigurable, all aspects of the implemented regular expression can be changed at run-time

    Merlin: A Language for Provisioning Network Resources

    Full text link
    This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them

    MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

    Get PDF
    In the current scenario network security is emerging the world. Matching large sets of patterns against an incoming stream of data is a fundamental task in several fields such as network security or computational biology. High-speed network intrusion detection systems (IDS) rely on efficient pattern matching techniques to analyze the packet payload and make decisions on the significance of the packet body. However, matching the streaming payload bytes against thousands of patterns at multi-gigabit rates is computationally intensive. Various techniques have been proposed in past but the performance of the system is reducing because of multi-gigabit rates.Pattern matching is a significant issue in intrusion detection systems, but by no means the only one. Handling multi-content rules, reordering, and reassembling incoming packets are also significant for system performance. We present two pattern matching techniques to compare incoming packets against intrusion detection search patterns. The first approach, decoded partial CAM (DpCAM), pre-decodes incoming characters, aligns the decoded data, and performs logical AND on them to produce the match signal for each pattern. The second approach, perfect hashing memory (PHmem), uses perfect hashing to determine a unique memory location that contains the search pattern and a comparison between incoming data and memory output to determine the match. The suggested methods have implemented in vhdl coding and we use Xilinx for synthesis

    High performance stride-based network payload inspection

    Get PDF
    There are two main drivers for network payload inspection: malicious data, attacks, virus detection in Network Intrusion Detection System (NIDS) and content detection in Data Leakage Prevention System (DLPS) or Copyright Infringement Detection System (CIDS). Network attacks are getting more and more prevalent. Traditional network firewalls can only check the packet header, but fail to detect attacks hidden in the packet payload. Therefore, the NIDS with Deep Packet Inspection (DPI) function has been developed and widely deployed. By checking each byte of a packet against the pattern set, which is called pattern matching, NIDS is able to detect the attack codes hidden in the payload. The pattern set is usually organized as a Deterministic Finite Automata (DFA). The processing time of DFA is proportional to the length of the input string, but the memory cost of a DFA is quite large. Meanwhile, the link bandwidth and the traffic of the Internet are rapidly increasing, the size of the attack signature database is also growing larger and larger due to the diversification of the attacks. Consequently, there is a strong demand for high performance and low storage cost NIDS. Traditional softwarebased and hardware-based pattern matching algorithms are have difficulty satisfying the processing speed requirement, thus high performance network payload inspection methods are needed to enable deep packet inspection at line rate. In this thesis, Stride Finite Automata (StriFA), a novel finite automata family to accelerate both string matching and regular expression matching, is presented. Compared with the conventional finite automata, which scan the entire traffic stream to locate malicious information, the StriFA only needs to scan samples of the traffic stream to find the suspicious information, thus increasing the matching speed and reducing memory requirements. Technologies such as instant messaging software (Skype, MSN) or BitTorrent file sharing methods, allow convenient sharing of information between managers, employees, customers, and partners. This, however, leads to two kinds of major security risks when exchanging data between different people: firstly, leakage of sensitive data from a company and, secondly, distribution of copyright infringing products in Peer to Peer (P2P) networks. Traditional DFA-based DPI solutions cannot be used for inspection of file distribution in P2P networks due to the potential out-of-order manner of the data delivery. To address this problem, a hybrid finite automaton called Skip-Stride-Neighbor Finite Automaton (S2NFA) is proposed to solve this problem. It combines benefits of the following three structures: 1) Skip-FA, which is used to solve the out-of-order data scanning problem; 2) Stride-DFA, which is introduced to reduce the memory usage of Skip-FA; 3) Neighbor-DFA which is based on the characteristics of Stride-DFA to get a low false positive rate at the additional cost of a small increase in memory consumption

    Based on Regular Expression Matching of Evaluation of the Task Performance in WSN: A Queue Theory Approach

    Get PDF
    Due to the limited resources of wireless sensor network, low efficiency of real-time communication scheduling, poor safety defects, and so forth, a queuing performance evaluation approach based on regular expression match is proposed, which is a method that consists of matching preprocessing phase, validation phase, and queuing model of performance evaluation phase. Firstly, the subset of related sequence is generated in preprocessing phase, guiding the validation phase distributed matching. Secondly, in the validation phase, the subset of features clustering, the compressed matching table is more convenient for distributed parallel matching. Finally, based on the queuing model, the sensor networks of task scheduling dynamic performance are evaluated. Experiments show that our approach ensures accurate matching and computational efficiency of more than 70%; it not only effectively detects data packets and access control, but also uses queuing method to determine the parameters of task scheduling in wireless sensor networks. The method for medium scale or large scale distributed wireless node has a good applicability
    • 

    corecore