1,376 research outputs found

    A QoS-enabled resource management scheme for F-HMIPv6 micro mobility approach

    Get PDF
    In the near future, wireless networks will certainly run real-time applications with special Quality of Service (QoS) requirements. In this context micro mobility management schemes such as Fast Handovers over Hierarchical Mobile IPv6 (F-HMIPv6) will be a useful tool in reducing Mobile IPv6 (MIPv6) handover disruption and thereby to improve delay and losses. However, F-HMIPv6 alone does not support QoS requirements for real-time applications. Therefore, in order to accomplish this goal, a novel resource management scheme for the Differentiated Services (DiffServ) QoS model is proposed to be used as an add-on to F-HMIPv6. The new resource management scheme combines the F-HMIPv6 functionalities with the DiffServ QoS model and with network congestion control and dynamic reallocation mechanisms in order to accommodate different QoS traffic requirements. This new scheme based on a Measurement-Based Admission Control (MBAC) algorithm is effective, simple, scalable and avoids the well known traditional resource reservation issues such as state maintenance, signaling overhead and processing load. By means of the admission evaluation of new flows and handover flows, it is able to provide the desired QoS requirements for new flows while preserving the QoS of existing ones. The evaluated results show that all QoS metrics analyzed were significantly improved with the new architecture indicating that it is able to provide a highly predictive QoS support to F-HMIPv6

    VirtuWind: Virtual and programmable industrial network prototype deployed in operational wind park.

    Get PDF
    With anticipated exponential growth of connected devices, future industrial networks require an open solutions architecture facilitated by standards and a strong ecosystem. Such solutions should also deal with range of quality of service requirements imposed by industrial networks. Preserving strict quality of service is particularly challenging when services pass across domains of multiple provides. VirtuWind aims to develop and demonstrate a Software Defined Networking and Network Function Virtualization ecosystem, based on an open, modular and secure framework to address stringent requirements of the industrial networks. A prototype of the framework for intra-domain and inter-domain scenarios will be showcased in real Wind Parks, as a representative use case of industrial networks. This paper details this vision and explains steps forward

    DISCO: Distributed Multi-domain SDN Controllers

    Full text link
    Modern multi-domain networks now span over datacenter networks, enterprise networks, customer sites and mobile entities. Such networks are critical and, thus, must be resilient, scalable and easily extensible. The emergence of Software-Defined Networking (SDN) protocols, which enables to decouple the data plane from the control plane and dynamically program the network, opens up new ways to architect such networks. In this paper, we propose DISCO, an open and extensible DIstributed SDN COntrol plane able to cope with the distributed and heterogeneous nature of modern overlay networks and wide area networks. DISCO controllers manage their own network domain and communicate with each others to provide end-to-end network services. This communication is based on a unique lightweight and highly manageable control channel used by agents to self-adaptively share aggregated network-wide information. We implemented DISCO on top of the Floodlight OpenFlow controller and the AMQP protocol. We demonstrated how DISCO's control plane dynamically adapts to heterogeneous network topologies while being resilient enough to survive to disruptions and attacks and providing classic functionalities such as end-point migration and network-wide traffic engineering. The experimentation results we present are organized around three use cases: inter-domain topology disruption, end-to-end priority service request and virtual machine migration

    VirtuWind: Virtual and Programmable Industrial Network Prototype Deployed in Operational Wind Park

    Get PDF
    With anticipated exponential growth of connected devices, future industrial networks require an open solutions architecture facilitated by standards and a strong ecosystem.VirtuWind aims to develop and demonstrate an SDN and NFV ecosystem, based on an open, modular and secure framework.A prototype of the framework for intra-domain and inter-domain scenarios will be showcased in real wind parks,as a representative use case of industrial networks. Validate the economic viability of the demonstrated solution is paramount for VirtuWind. This paper details this vision and explains steps forward

    Hierarchical Mobility Management for VoIP Traffic

    Get PDF

    End-to-end QoS architecture for 4G scenarios

    Get PDF
    This paper describes the QoS architecture and the corresponding QoS signalling protocols to be developed inside the IST project Daidalos. We address the main results achieved in terms of the definition of the QoS components and its interfaces, the description of the application and network services, definition of the signalling scenarios for the integration of the QoS signalling with the application signalling and with mobility approaches, and specification of the intra- and inter- domain QoS control approaches. We also describe the QoS management of the system, through the Policy–based Management System, and a Real-time Network Monitoring system able to aid in admission control with the results of active and passive measurements. All the elements, interfaces and functionalities take into account multicast services and inherent broadcast networks
    • 

    corecore