1,647 research outputs found

    Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform

    Get PDF
    Nowadays, most people have limited leisure time and the offer of (cultural) activities to spend this time is enormous. Consequently, picking the most appropriate events becomes increasingly difficult for end-users. This complexity of choice reinforces the necessity of filtering systems that assist users in finding and selecting relevant events. Whereas traditional filtering tools enable e.g. the use of keyword-based or filtered searches, innovative recommender systems draw on user ratings, preferences, and metadata describing the events. Existing collaborative recommendation techniques, developed for suggesting web-shop products or audio-visual content, have difficulties with sparse rating data and can not cope at all with event-specific restrictions like availability, time, and location. Moreover, aggregating, enriching, and distributing these events are additional requisites for an optimal communication channel. In this paper, we propose a highly-scalable event recommendation platform which considers event-specific characteristics. Personal suggestions are generated by an advanced collaborative filtering algorithm, which is more robust on sparse data by extending user profiles with presumable future consumptions. The events, which are described using an RDF/OWL representation of the EventsML-G2 standard, are categorized and enriched via smart indexing and open linked data sets. This metadata model enables additional content-based filters, which consider event-specific characteristics, on the recommendation list. The integration of these different functionalities is realized by a scalable and extendable bus architecture. Finally, focus group conversations were organized with external experts, cultural mediators, and potential end-users to evaluate the event distribution platform and investigate the possible added value of recommendations for cultural participation

    Implicit search trails for video recommendation

    Get PDF
    In this demo paper we demonstrate our approach and system for using implicit actions involved in video search to provide recommendations to users. The goal of this system is to improve the quality of the results that users find, and in doing so, help users to explore a large and difficult information space and help them consider search options that they may not have considered otherwise. Results of a user evaluation show that this approach achieves all of these goals

    Relational Collaborative Filtering:Modeling Multiple Item Relations for Recommendation

    Get PDF
    Existing item-based collaborative filtering (ICF) methods leverage only the relation of collaborative similarity. Nevertheless, there exist multiple relations between items in real-world scenarios. Distinct from the collaborative similarity that implies co-interact patterns from the user perspective, these relations reveal fine-grained knowledge on items from different perspectives of meta-data, functionality, etc. However, how to incorporate multiple item relations is less explored in recommendation research. In this work, we propose Relational Collaborative Filtering (RCF), a general framework to exploit multiple relations between items in recommender system. We find that both the relation type and the relation value are crucial in inferring user preference. To this end, we develop a two-level hierarchical attention mechanism to model user preference. The first-level attention discriminates which types of relations are more important, and the second-level attention considers the specific relation values to estimate the contribution of a historical item in recommending the target item. To make the item embeddings be reflective of the relational structure between items, we further formulate a task to preserve the item relations, and jointly train it with the recommendation task of preference modeling. Empirical results on two real datasets demonstrate the strong performance of RCF. Furthermore, we also conduct qualitative analyses to show the benefits of explanations brought by the modeling of multiple item relations

    TinyKG: Memory-Efficient Training Framework for Knowledge Graph Neural Recommender Systems

    Full text link
    There has been an explosion of interest in designing various Knowledge Graph Neural Networks (KGNNs), which achieve state-of-the-art performance and provide great explainability for recommendation. The promising performance is mainly resulting from their capability of capturing high-order proximity messages over the knowledge graphs. However, training KGNNs at scale is challenging due to the high memory usage. In the forward pass, the automatic differentiation engines (\textsl{e.g.}, TensorFlow/PyTorch) generally need to cache all intermediate activation maps in order to compute gradients in the backward pass, which leads to a large GPU memory footprint. Existing work solves this problem by utilizing multi-GPU distributed frameworks. Nonetheless, this poses a practical challenge when seeking to deploy KGNNs in memory-constrained environments, especially for industry-scale graphs. Here we present TinyKG, a memory-efficient GPU-based training framework for KGNNs for the tasks of recommendation. Specifically, TinyKG uses exact activations in the forward pass while storing a quantized version of activations in the GPU buffers. During the backward pass, these low-precision activations are dequantized back to full-precision tensors, in order to compute gradients. To reduce the quantization errors, TinyKG applies a simple yet effective quantization algorithm to compress the activations, which ensures unbiasedness with low variance. As such, the training memory footprint of KGNNs is largely reduced with negligible accuracy loss. To evaluate the performance of our TinyKG, we conduct comprehensive experiments on real-world datasets. We found that our TinyKG with INT2 quantization aggressively reduces the memory footprint of activation maps with 7Ă—7 \times, only with 2%2\% loss in accuracy, allowing us to deploy KGNNs on memory-constrained devices

    A multi-dimensional trust-model for dynamic, scalable and resources-efficient trust-management in social internet of things

    Get PDF
    L'internet des Objets (IoT) est un paradigme qui a rendu les objets du quotidien, intelligents en leur offrant la possibilité de se connecter à Internet, de communiquer et d'interagir. L'intégration de la composante sociale dans l'IoT a donné naissance à l'Internet des Objets Social (SIoT), qui a permis de surmonter diverse problématiques telles que l'interopérabilité et la découverte de ressources. Dans ce type d'environnement, les participants rivalisent afin d'offrir une variété de services attrayants. Certains d'entre eux ont recours à des comportements malveillants afin de propager des services de mauvaise qualité. Ils lancent des attaques, dites de confiance, et brisent les fonctionnalités de base du système. Plusieurs travaux de la littérature ont abordé ce problème et ont proposé différents modèles de confiance. La majorité d'entre eux ont tenté de réappliquer des modèles de confiance conçus pour les réseaux sociaux ou les réseaux pair-à-pair. Malgré les similitudes entre ces types de réseaux, les réseaux SIoT présentent des particularités spécifiques. Dans les SIoT, nous avons différents types d'entités qui collaborent, à savoir des humains, des dispositifs et des services. Les dispositifs peuvent présenter des capacités de calcul et de stockage très limitées et leur nombre peut atteindre des millions. Le réseau qui en résulte est complexe et très dynamique et les répercussions des attaques de confiance peuvent être plus importantes. Nous proposons un nouveau modèle de confiance, multidimensionnel, dynamique et scalable, spécifiquement conçu pour les environnements SIoT. Nous proposons, en premier lieu, des facteurs permettant de décrire le comportement des trois types de nœuds impliqués dans les réseaux SIoT et de quantifier le degré de confiance selon les trois dimensions de confiance résultantes. Nous proposons, ensuite, une méthode d'agrégation basée sur l'apprentissage automatique et l'apprentissage profond qui permet d'une part d'agréger les facteurs proposés pour obtenir un score de confiance permettant de classer les nœuds, mais aussi de détecter les types d'attaques de confiance et de les contrer. Nous proposons, ensuite, une méthode de propagation hybride qui permet de diffuser les valeurs de confiance dans le réseau, tout en remédiant aux inconvénients des méthodes centralisée et distribuée. Cette méthode permet d'une part d'assurer la scalabilité et le dynamisme et d'autre part, de minimiser la consommation des ressources. Les expérimentations appliquées sur des de données synthétiques nous ont permis de valider le modèle proposé.The Internet of Things (IoT) is a paradigm that has made everyday objects intelligent by giving them the ability to connect to the Internet, communicate and interact. The integration of the social component in the IoT has given rise to the Social Internet of Things (SIoT), which has overcome various issues such as interoperability, navigability and resource/service discovery. In this type of environment, participants compete to offer a variety of attractive services. Some of them resort to malicious behavior to propagate poor quality services. They launch so-called Trust-Attacks (TA) and break the basic functionality of the system. Several works in the literature have addressed this problem and have proposed different trust-models. Most of them have attempted to adapt and reapply trust models designed for traditional social networks or peer-to-peer networks. Despite the similarities between these types of networks, SIoT ones have specific particularities. In SIoT, there are different types of entities that collaborate: humans, devices, and services. Devices can have very limited computing and storage capacities, and their number can be as high as a few million. The resulting network is complex and highly dynamic, and the impact of Trust-Attacks can be more compromising. In this work, we propose a Multidimensional, Dynamic, Resources-efficient and Scalable trust-model that is specifically designed for SIoT environments. We, first, propose features to describe the behavior of the three types of nodes involved in SIoT networks and to quantify the degree of trust according to the three resulting Trust-Dimensions. We propose, secondly, an aggregation method based on Supervised Machine-Learning and Deep Learning that allows, on the one hand, to aggregate the proposed features to obtain a trust score allowing to rank the nodes, but also to detect the different types of Trust-Attacks and to counter them. We then propose a hybrid propagation method that allows spreading trust values in the network, while overcoming the drawbacks of centralized and distributed methods. The proposed method ensures scalability and dynamism on the one hand, and minimizes resource consumption (computing and storage), on the other. Experiments applied to synthetic data have enabled us to validate the resilience and performance of the proposed model

    Online optimization for user-specific hybrid recommender systems

    Get PDF
    User-specific hybrid recommender systems aim at harnessing the power of multiple recommendation algorithms in a user-specific hybrid scenario. While research has previously focused on self-learning hybrid configurations, such systems are often too complex to take out of the lab and are seldom tested against real-world requirements. In this work, we describe a self-learning user-specific hybrid recommender system and assess its ability towards meeting a set of pre-defined requirements relevant to online recommendation scenarios: responsiveness, scalability, system transparency and user control. By integrating a client-server architectural design, the system was able to scale across multiple computing nodes in a very flexible way. A specific user-interface for a movie recommendation scenario is proposed to illustrate system transparency and user control possibilities, which integrate directly in the hybrid recommendation process. Finally, experiments were performed focusing both on weak and strong scaling scenarios on a high performance computing environment. Results showed performance to be limited only by the slowest integrated recommendation algorithm with very limited hybrid optimization overhead
    • …
    corecore