14,482 research outputs found

    FedML-HE: An Efficient Homomorphic-Encryption-Based Privacy-Preserving Federated Learning System

    Full text link
    Federated Learning trains machine learning models on distributed devices by aggregating local model updates instead of local data. However, privacy concerns arise as the aggregated local models on the server may reveal sensitive personal information by inversion attacks. Privacy-preserving methods, such as homomorphic encryption (HE), then become necessary for FL training. Despite HE's privacy advantages, its applications suffer from impractical overheads, especially for foundation models. In this paper, we present FedML-HE, the first practical federated learning system with efficient HE-based secure model aggregation. FedML-HE proposes to selectively encrypt sensitive parameters, significantly reducing both computation and communication overheads during training while providing customizable privacy preservation. Our optimized system demonstrates considerable overhead reduction, particularly for large foundation models (e.g., ~10x reduction for ResNet-50, and up to ~40x reduction for BERT), demonstrating the potential for scalable HE-based FL deployment

    PrivacyFL: A simulator for privacy-preserving and secure federated learning

    Full text link
    Federated learning is a technique that enables distributed clients to collaboratively learn a shared machine learning model while keeping their training data localized. This reduces data privacy risks, however, privacy concerns still exist since it is possible to leak information about the training dataset from the trained model's weights or parameters. Setting up a federated learning environment, especially with security and privacy guarantees, is a time-consuming process with numerous configurations and parameters that can be manipulated. In order to help clients ensure that collaboration is feasible and to check that it improves their model accuracy, a real-world simulator for privacy-preserving and secure federated learning is required. In this paper, we introduce PrivacyFL, which is an extensible, easily configurable and scalable simulator for federated learning environments. Its key features include latency simulation, robustness to client departure, support for both centralized and decentralized learning, and configurable privacy and security mechanisms based on differential privacy and secure multiparty computation. In this paper, we motivate our research, describe the architecture of the simulator and associated protocols, and discuss its evaluation in numerous scenarios that highlight its wide range of functionality and its advantages. Our paper addresses a significant real-world problem: checking the feasibility of participating in a federated learning environment under a variety of circumstances. It also has a strong practical impact because organizations such as hospitals, banks, and research institutes, which have large amounts of sensitive data and would like to collaborate, would greatly benefit from having a system that enables them to do so in a privacy-preserving and secure manner

    Centralised rehearsal of decentralised cooperation: Multi-agent reinforcement learning for the scalable coordination of residential energy flexibility

    Full text link
    This paper investigates how deep multi-agent reinforcement learning can enable the scalable and privacy-preserving coordination of residential energy flexibility. The coordination of distributed resources such as electric vehicles and heating will be critical to the successful integration of large shares of renewable energy in our electricity grid and, thus, to help mitigate climate change. The pre-learning of individual reinforcement learning policies can enable distributed control with no sharing of personal data required during execution. However, previous approaches for multi-agent reinforcement learning-based distributed energy resources coordination impose an ever greater training computational burden as the size of the system increases. We therefore adopt a deep multi-agent actor-critic method which uses a \emph{centralised but factored critic} to rehearse coordination ahead of execution. Results show that coordination is achieved at scale, with minimal information and communication infrastructure requirements, no interference with daily activities, and privacy protection. Significant savings are obtained for energy users, the distribution network and greenhouse gas emissions. Moreover, training times are nearly 40 times shorter than with a previous state-of-the-art reinforcement learning approach without the factored critic for 30 homes

    NVIDIA FLARE: Federated Learning from Simulation to Real-World

    Full text link
    Federated learning (FL) enables building robust and generalizable AI models by leveraging diverse datasets from multiple collaborators without centralizing the data. We created NVIDIA FLARE as an open-source software development kit (SDK) to make it easier for data scientists to use FL in their research and real-world applications. The SDK includes solutions for state-of-the-art FL algorithms and federated machine learning approaches, which facilitate building workflows for distributed learning across enterprises and enable platform developers to create a secure, privacy-preserving offering for multiparty collaboration utilizing homomorphic encryption or differential privacy. The SDK is a lightweight, flexible, and scalable Python package. It allows researchers to apply their data science workflows in any training libraries (PyTorch, TensorFlow, XGBoost, or even NumPy) in real-world FL settings. This paper introduces the key design principles of NVFlare and illustrates some use cases (e.g., COVID analysis) with customizable FL workflows that implement different privacy-preserving algorithms. Code is available at https://github.com/NVIDIA/NVFlare.Comment: Accepted at the International Workshop on Federated Learning, NeurIPS 2022, New Orleans, USA (https://federated-learning.org/fl-neurips-2022); Revised version v2: added Key Components list, system metrics for homomorphic encryption experiment; Extended v3 for journal submissio

    DeepSecure: Scalable Provably-Secure Deep Learning

    Get PDF
    This paper proposes DeepSecure, a novel framework that enables scalable execution of the state-of-the-art Deep Learning (DL) models in a privacy-preserving setting. DeepSecure targets scenarios in which neither of the involved parties including the cloud servers that hold the DL model parameters or the delegating clients who own the data is willing to reveal their information. Our framework is the first to empower accurate and scalable DL analysis of data generated by distributed clients without sacrificing the security to maintain efficiency. The secure DL computation in DeepSecure is performed using Yao's Garbled Circuit (GC) protocol. We devise GC-optimized realization of various components used in DL. Our optimized implementation achieves more than 58-fold higher throughput per sample compared with the best-known prior solution. In addition to our optimized GC realization, we introduce a set of novel low-overhead pre-processing techniques which further reduce the GC overall runtime in the context of deep learning. Extensive evaluations of various DL applications demonstrate up to two orders-of-magnitude additional runtime improvement achieved as a result of our pre-processing methodology. This paper also provides mechanisms to securely delegate GC computations to a third party in constrained embedded settings
    • …
    corecore