23,376 research outputs found

    SQPR: Stream Query Planning with Reuse

    Get PDF
    When users submit new queries to a distributed stream processing system (DSPS), a query planner must allocate physical resources, such as CPU cores, memory and network bandwidth, from a set of hosts to queries. Allocation decisions must provide the correct mix of resources required by queries, while achieving an efficient overall allocation to scale in the number of admitted queries. By exploiting overlap between queries and reusing partial results, a query planner can conserve resources but has to carry out more complex planning decisions. In this paper, we describe SQPR, a query planner that targets DSPSs in data centre environments with heterogeneous resources. SQPR models query admission, allocation and reuse as a single constrained optimisation problem and solves an approximate version to achieve scalability. It prevents individual resources from becoming bottlenecks by re-planning past allocation decisions and supports different allocation objectives. As our experimental evaluation in comparison with a state-of-the-art planner shows SQPR makes efficient resource allocation decisions, even with a high utilisation of resources, with acceptable overheads

    StreamLearner: Distributed Incremental Machine Learning on Event Streams: Grand Challenge

    Full text link
    Today, massive amounts of streaming data from smart devices need to be analyzed automatically to realize the Internet of Things. The Complex Event Processing (CEP) paradigm promises low-latency pattern detection on event streams. However, CEP systems need to be extended with Machine Learning (ML) capabilities such as online training and inference in order to be able to detect fuzzy patterns (e.g., outliers) and to improve pattern recognition accuracy during runtime using incremental model training. In this paper, we propose a distributed CEP system denoted as StreamLearner for ML-enabled complex event detection. The proposed programming model and data-parallel system architecture enable a wide range of real-world applications and allow for dynamically scaling up and out system resources for low-latency, high-throughput event processing. We show that the DEBS Grand Challenge 2017 case study (i.e., anomaly detection in smart factories) integrates seamlessly into the StreamLearner API. Our experiments verify scalability and high event throughput of StreamLearner.Comment: Christian Mayer, Ruben Mayer, and Majd Abdo. 2017. StreamLearner: Distributed Incremental Machine Learning on Event Streams: Grand Challenge. In Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems (DEBS '17), 298-30

    Garnet: a middleware architecture for distributing data streams originating in wireless sensor networks

    Get PDF
    We present an architectural framework, Garnet, which provides a data stream centric abstraction to encourage the manipulation and exploitation of data generated in sensor networks. By providing middleware services to allow mutually-unaware applications to manipulate sensor behaviour, a scalable, extensible platform is provided. We focus on sensor networks with transmit and receive capabilities as this combination poses greater challenges for managing and distributing sensed data. Our approach allows simple and sophisticated sensors to coexist, and allows data consumers to be mutually unaware of each other This also promotes the use of middleware services to mediate among consumers with potentially conflicting demands for shared data. Garnet has been implemented in Java, and we report on our progress to date and outline some likely scenarios where the use of our distributed architecture and accompanying middleware support enhances the task of sharing data in sensor network environments
    • …
    corecore