1,707 research outputs found

    10181 Abstracts Collection -- Program Development for Extreme-Scale Computing

    Get PDF
    From May 2nd to May 7th, 2010, the Dagstuhl Seminar 10181 ``Program Development for Extreme-Scale Computing \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. Links to extended abstracts or full papers are provided, if available

    High Performance with Prescriptive Optimization and Debugging

    Get PDF

    ReCrash: Making Crashes Reproducible

    Get PDF
    It is difficult to fix a problem without being able to reproduce it.However, reproducing a problem is often difficult and time-consuming.This paper proposes a novel algorithm, ReCrash, that generatesmultiple unit tests that reproduce a given program crash.ReCrash dynamically tracks method calls during every execution of the target program. If the program crashes, ReCrash saves information about the relevant method calls and uses the saved information to create unit tests reproducing the crash.We present reCrashJ an implementation of ReCrash for Java. reCrashJ reproducedreal crashes from javac, SVNKit, Eclipse JDT, and BST. reCrashJ is efficient, incurring 13%-64% performance overhead. If this overhead is unacceptable, then reCrashJ has another mode that has negligible overhead until a crash occurs and 0%-1.7% overhead until a second crash, at which point the test cases are generated

    An Evaluation of the X10 Programming Language

    Get PDF
    As predicted by Moore\u27s law, the number of transistors on a chip has been doubled approximately every two years. As miraculous as it sounds, for many years, the extra transistors have massively benefited the whole computer industry, by using the extra transistors to increase CPU clock speed, thus boosting performance. However, due to heat wall and power constraints, the clock speed cannot be increased limitlessly. Hardware vendors now have to take another path other than increasing clock speed, which is to utilize the transistors to increase the number of processor cores on each chip. This hardware structural change presents inevitable challenges to software structure, where single thread targeted software will not benefit from newer chips or may even suffer from lower clock speed. The two fundamental challenges are: 1. How to deal with the stagnation of single core clock speed and cache memory. 2. How to utilize the additional power generated from more cores on a chip. Most software programming languages nowadays have distributed computing support, such as C and Java [1]. Meanwhile, some new programming languages were invented from scratch just to take advantage of the more distributed hardware structures. The X10 Programming Language is one of them. The goal of this project is to evaluate X10 in terms of performance, programmability and tool support
    • …
    corecore