610 research outputs found

    Data Stream Clustering: A Review

    Full text link
    Number of connected devices is steadily increasing and these devices continuously generate data streams. Real-time processing of data streams is arousing interest despite many challenges. Clustering is one of the most suitable methods for real-time data stream processing, because it can be applied with less prior information about the data and it does not need labeled instances. However, data stream clustering differs from traditional clustering in many aspects and it has several challenging issues. Here, we provide information regarding the concepts and common characteristics of data streams, such as concept drift, data structures for data streams, time window models and outlier detection. We comprehensively review recent data stream clustering algorithms and analyze them in terms of the base clustering technique, computational complexity and clustering accuracy. A comparison of these algorithms is given along with still open problems. We indicate popular data stream repositories and datasets, stream processing tools and platforms. Open problems about data stream clustering are also discussed.Comment: Has been accepted for publication in Artificial Intelligence Revie

    SeLINA: a Self-Learning Insightful Network Analyzer

    Get PDF
    Understanding the behavior of a network from a large scale traffic dataset is a challenging problem. Big data frameworks offer scalable algorithms to extract information from raw data, but often require a sophisticated fine-tuning and a detailed knowledge of machine learning algorithms. To streamline this process, we propose SeLINA (Self-Learning Insightful Network Analyzer), a generic, self-tuning, simple tool to extract knowledge from network traffic measurements. SeLINA includes different data analytics techniques providing self-learning capabilities to state-of-the-art scalable approaches, jointly with parameter auto-selection to off-load the network expert from parameter tuning. We combine both unsupervised and supervised approaches to mine data with a scalable approach. SeLINA embeds mechanisms to check if the new data fits the model, to detect possible changes in the traffic, and to, possibly automatically, trigger model rebuilding. The result is a system that offers human-readable models of the data with minimal user intervention, supporting domain experts in extracting actionable knowledge and highlighting possibly meaningful interpretations. SeLINA's current implementation runs on Apache Spark. We tested it on large collections of realworld passive network measurements from a nationwide ISP, investigating YouTube and P2P traffic. The experimental results confirmed the ability of SeLINA to provide insights and detect changes in the data that suggest further analyse

    SeLINA: a Self-Learning Insightful Network Analyzer

    Get PDF
    Understanding the behavior of a network from a large scale traffic dataset is a challenging problem. Big data frameworks offer scalable algorithms to extract information from raw data, but often require a sophisticated fine-tuning and a detailed knowledge of machine learning algorithms. To streamline this process, we propose SeLINA (Self-Learning Insightful Network Analyzer), a generic, self-tuning, simple tool to extract knowledge from network traffic measurements. SeLINA includes different data analytics techniques providing self-learning capabilities to state-of-the-art scalable approaches, jointly with parameter auto-selection to off-load the network expert from parameter tuning. We combine both unsupervised and supervised approaches to mine data with a scalable approach. SeLINA embeds mechanisms to check if the new data fits the model, to detect possible changes in the traffic, and to, possibly automatically, trigger model rebuilding. The result is a system that offers human-readable models of the data with minimal user intervention, supporting domain experts in extracting actionable knowledge and highlighting possibly meaningful interpretations. SeLINA’s current implementation runs on Apache Spark. We tested it on large collections of realworld passive network measurements from a nationwide ISP, investigating YouTube and P2P traffic. The experimental results confirmed the ability of SeLINA to provide insights and detect changes in the data that suggest further analyses

    Quality of Service Aware Data Stream Processing for Highly Dynamic and Scalable Applications

    Get PDF
    Huge amounts of georeferenced data streams are arriving daily to data stream management systems that are deployed for serving highly scalable and dynamic applications. There are innumerable ways at which those loads can be exploited to gain deep insights in various domains. Decision makers require an interactive visualization of such data in the form of maps and dashboards for decision making and strategic planning. Data streams normally exhibit fluctuation and oscillation in arrival rates and skewness. Those are the two predominant factors that greatly impact the overall quality of service. This requires data stream management systems to be attuned to those factors in addition to the spatial shape of the data that may exaggerate the negative impact of those factors. Current systems do not natively support services with quality guarantees for dynamic scenarios, leaving the handling of those logistics to the user which is challenging and cumbersome. Three workloads are predominant for any data stream, batch processing, scalable storage and stream processing. In this thesis, we have designed a quality of service aware system, SpatialDSMS, that constitutes several subsystems that are covering those loads and any mixed load that results from intermixing them. Most importantly, we natively have incorporated quality of service optimizations for processing avalanches of geo-referenced data streams in highly dynamic application scenarios. This has been achieved transparently on top of the codebases of emerging de facto standard best-in-class representatives, thus relieving the overburdened shoulders of the users in the presentation layer from having to reason about those services. Instead, users express their queries with quality goals and our system optimizers compiles that down into query plans with an embedded quality guarantee and leaves logistic handling to the underlying layers. We have developed standard compliant prototypes for all the subsystems that constitutes SpatialDSMS

    Comparative Evaluation for the Performance of Big Stream Processing Systems

    Get PDF
    Andmete hulk kasvab tänapäeval meeletu kiirusega ning seda andmete hulka tuleb korrektselt töödelda, et saavutada kontroll andmete üle. Antud olukord sunnib meid mõtlema andmevoo töötlemise peale. Enamasti nõuavad andmemahuline pettuse tuvastus-, kaubandus-, tootmis-, sõjanduse ja luure süsteemid pidevat andmete analüüsi (reaalajas). Sellist tüüpi süsteemid nõuavad kõrgetasemel ist mustrite sobitamist ja korrelatsioone. Aja jooksul on ilmnenud erinevaid andmevoo töötlemise võimalusi. Antud lõputöös tehakse jõudlustest Apache Flink, Apache Storm, Heron, Kafka ja Apache Spark andmevoo töötlemismootoritega ning tulemusi võrreldakse ja vastandatakse omavahel. Nendes rakendustes ja domeenides on väga oluline nõue koguda, menetleda ning analüüsida olulisi andmevooge, et eraldada sealt väärtusliku informatsiooni. Antud magistritöö eesmärk on läbi viia empiiriline hindamine ning võrdlemine kõrgtasemel andmevoo töötlemissüsteemide vahel.Nowadays data is growing with tremendous acceleration, and this growing data must be processed properly if we want to have control over it. It pushes us to think about data stream processing. Most of the time, a data-intensive fraud detecting, trading, manufacturing, military and intelligence systems require processing data immediately (real-time). These kinds of systems need considerably ssophisticated pattern matching and correlations. However, other uses of stream processing have also emerged over time. In this thesis, we will benchmark to compare and contrast Apache Flink, Apache Storm, Heron, Kafka an Apache Spark stream processing engines. In these applications and domains, there is a crucial requirement to collect, process, and analyze significant streams of data to extract valuable information. This thesis aims to conduct an empirical evaluation and benchmarking of the state-of-the-art of big stream processing systems
    corecore