33 research outputs found

    Video Conference as a tool for Higher Education

    Get PDF
    The book describes the activities of the consortium member institutions in the framework of the TEMPUS IV Joint Project ViCES - Video Conferencing Educational Services (144650-TEMPUS-2008-IT-JPGR). In order to provide the basis for the development of a distance learning environment based on video conferencing systems and develop a blended learning courses methodology, the TEMPUS Project VICES (2009-2012) was launched in 2009. This publication collects the conclusion of the project and it reports the main outcomes together with the approach followed by the different partners towards the achievement of the project's goal. The book includes several contributions focussed on specific topics related to videoconferencing services, namely how to enable such services in educational contexts so that, the installation and deployment of videoconferencing systems could be conceived an integral part of virtual open campuses

    An H.323-based adaptive QoS architecture

    Full text link
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Distributed Rate Allocation in Switch-Based Multiparty Videoconferencing System

    Get PDF
    Multiparty videoconferences, or more generally multiparty video calls, are gaining a lot of popularity as they offer a rich communication experience. These applications have, however, large requirements in terms of both network and computational resources and have to deal with sets of heterogenous clients. The multiparty videoconferencing systems are usually either based on expensive central nodes, called Multipoint Control Units (MCU), with transcoding capabilities, or on a peer-to-peer architecture where users cooperate to distribute more efficiently the different video streams. Whereas the first class of systems requires an expensive central hardware, the second one depends completely on the redistribution capacity of the users, which sometimes might neither provide sufficient bandwidth nor be reliable enough. In this work we propose an alternative solution where we use a central node to distribute the video streams, but at the same time we maintain the hardware complexity and the computational requirements of this node as low as possible, e.g. it has no video decoding capabilities. We formulate the rate allocation problem as an optimization problem that aims at maximizing the Quality of Service (QoS) of the videoconference. We propose two different distributed algorithms for solving the optimization problem: the first algorithm is able to find an approximate solution of the problem in a one-shot execution, whereas the second algorithm, based on Lagrangian relaxation, performs iterative updates of the optimization variables in order to gradually increase the value of the objective function. The two algorithms, though being disjointed, nicely complement each other. If executed in sequence, they allow to achieve both, a quick approximate rate reallocation in case of a sudden change of the system conditions, and a precise refinement of the variables which avoids problems caused by possible faulty approximate solutions. We have further implemented our solution in a network simulator where we show that our rate allocation algorithm is able to properly optimize users' QoS. We also illustrate the benefits of our solution in terms of network usage and overall utility when compared to a baseline heuristic method operating on the same system architecture

    Network convergence and QoS for future multimedia services in the VISION project

    Get PDF
    The emerging use of real-time 3D-based multimedia applications imposes strict quality of service (QoS) requirements on both access and core networks. These requirements and their impact to provide end-to-end 3D videoconferencing services have been studied within the Spanish-funded VISION project, where different scenarios were implemented showing an agile stereoscopic video call that might be offered to the general public in the near future. In view of the requirements, we designed an integrated access and core converged network architecture which provides the requested QoS to end-to-end IP sessions. Novel functional blocks are proposed to control core optical networks, the functionality of the standard ones is redefined, and the signaling improved to better meet the requirements of future multimedia services. An experimental test-bed to assess the feasibility of the solution was also deployed. In such test-bed, set-up and release of end-to-end sessions meeting specific QoS requirements are shown and the impact of QoS degradation in terms of the user perceived quality degradation is quantified. In addition, scalability results show that the proposed signaling architecture is able to cope with large number of requests introducing almost negligible delay

    Bit Rate Control for Real-time Multipoint Video Conferencing

    Get PDF
    With the rapid development of video compression and network technology, real-time video communications has become a popular part of our daily life. Rate control is needed to satisfy the expectation of high quality and to make it possible to transmit over limited bandwidth. The objective of this thesis is to design a rate control scheme for a real-time Transcoding-Compositing Multipoint Video Conferencing System, which operates exclusively in the DCT domain. In this Transcoding-Compositing system, the mode of the composited frame should firstly be decided before encoding the composited image. A mode decision method relying on Karhunen-Loeve scene change detection is proposed. A new linear source Rate-Distortion model is developed in the - domain ( is the percentage of zero), based on which rate control scheme is designed. The designed rate control scheme is parted into three levels: Frame Level, Sub-frame Level, and Macroblock Level. Frame Level rate control decides the bit budget for each frame based on the buffer fullness. Sub-frame Level rate control optimizes the distribution of the bit budget among the decimated sub-images. Based on the linear source model, Macroblock Level rate control carries out an adaptive procedure to precisely control the number of encoding bits for each sub-image
    corecore