1,029 research outputs found

    Supporting Consistency Management in Dynamic Content Distribution Overlays

    Get PDF

    LHView: Location Aware Hybrid Partial View

    Get PDF
    The rise of the Cloud creates enormous business opportunities for companies to provide global services, which requires applications supporting the operation of those services to scale while minimizing maintenance costs, either due to unnecessary allocation of resources or due to excessive human supervision and administration. Solutions designed to support such systems have tackled fundamental challenges from individual component failure to transient network partitions. A fundamental aspect that all scalable large systems have to deal with is the membership of the system, i.e, tracking the active components that compose the system. Most systems rely on membership management protocols that operate at the application level, many times exposing the interface of a logical overlay network, that should guarantee high scalability, efficiency, and robustness. Although these protocols are capable of repairing the overlay in face of large numbers of individual components faults, when scaling to global settings (i.e, geo-distributed scenarios), this robustness is a double edged-sword because it is extremely complex for a node in a system to distinguish between a set of simultaneously node failures and a (transient) network partition. Thus the occurrence of a network partition creates isolated sub-sets of nodes incapable of reconnecting even after the recovery from the partition. This work address this challenges by proposing a novel datacenter-aware membership protocol to tolerate network partitions by applying existing overlay management techniques and classification techniques that may allow the system to efficiently cope with such events without compromising the remaining properties of the overlay network. Furthermore, we strive to achieve these goals with a solution that requires minimal human intervention

    Reliable Messaging to Millions of Users with MigratoryData

    Full text link
    Web-based notification services are used by a large range of businesses to selectively distribute live updates to customers, following the publish/subscribe (pub/sub) model. Typical deployments can involve millions of subscribers expecting ordering and delivery guarantees together with low latencies. Notification services must be vertically and horizontally scalable, and adopt replication to provide a reliable service. We report our experience building and operating MigratoryData, a highly-scalable notification service. We discuss the typical requirements of MigratoryData customers, and describe the architecture and design of the service, focusing on scalability and fault tolerance. Our evaluation demonstrates the ability of MigratoryData to handle millions of concurrent connections and support a reliable notification service despite server failures and network disconnections

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    D.1.3 – Protocols for emergent localities

    Get PDF
    GDD_HCERES2020This report presents two contributions that illustrate the potential of emerging-locality protocols in large-scale decentralized systems, in two areas of decentralized social computing: recommendation, and eventual consistency of mutable data structures. The first contribution consists of a framework supporting the development of dynamically adaptive decen-tralised recommendation systems. Decentralised recommenders have been proposed to deliver privacy-preserving, personalised and highly scalable on-line recommendations. Current implementations tend, however, to rely on a hard-wired similarity metric that cannot adapt. This constitutes a strong limitation in the face of evolving needs. Our framework address this through a decentralised form of adaptation, in which individual nodes can independently select, and update their own recommendation algorithm, while still collectively contributing to the overall system's mission. Our second contribution addresses the growing demand for differentiated consistency requirements in large-scale applications. A large number of today's applications rely on Eventual Consistency, a consistency model that emphasizes liveness over safety. Designers generally adopt this consistency model uniformly throughout a distributed system due to its ability to scale as the number of users or devices grows larger. But this clashes with the need for differentiated consistency requirements. In this contribution, we address this need by introducing UPS, a novel consistency mechanism that offers differentiated eventual consistency and delivery speed by working in pair with a two-phase epidemic broadcast protocol. We propose a closed-form analysis of our approach's delivery speed, and we evaluate our complete protocol experimentally on a simulated network of one million nodes. To measure the consistency trade-off, we formally define a novel and scalable consistency metric operating at runtime

    Enabling Internet-Scale Publish/Subscribe In Overlay Networks

    Get PDF
    As the amount of data in todays Internet is growing larger, users are exposed to too much information, which becomes increasingly more difficult to comprehend. Publish/subscribe systems leverage this problem by providing loosely-coupled communications between producers and consumers of data in a network. Data consumers, i.e., subscribers, are provided with a subscription mechanism, to express their interests in a subset of data, in order to be notified only when some data that matches their subscription is generated by the producers, i.e., publishers. Most publish/subscribe systems today, are based on the client/server architectural model. However, to provide the publish/subscribe service in large scale, companies either have to invest huge amount of money for over-provisioning the resources, or are prone to frequent service failures. Peer-to-peer overlay networks are attractive alternative solutions for building Internet-scale publish/subscribe systems. However, scalability comes with a cost: a published message often needs to traverse a large number of uninterested (unsubscribed) nodes before reaching all its subscribers. We refer to this undesirable traffic, as relay overhead. Without careful considerations, the relay overhead might sharply increase resource consumption for the relay nodes (in terms of bandwidth transmission cost, CPU, etc) and could ultimately lead to rapid deterioration of the system’s performance once the relay nodes start dropping the messages or choose to permanently abandon the system. To mitigate this problem, some solutions use unbounded number of connections per node, while some other limit the expressiveness of the subscription scheme. In this thesis work, we introduce two systems called Vitis and Vinifera, for topic-based and content-based publish/subscribe models, respectively. Both these systems are gossip-based and significantly decrease the relay overhead. We utilize novel techniques to cluster together nodes that exhibit similar subscriptions. In the topic-based model, distinct clusters for each topic are constructed, while clusters in the content-based model are fuzzy and do not have explicit boundaries. We augment these clustered overlays by links that facilitate routing in the network. We construct a hybrid system by injecting structure into an otherwise unstructured network. The resulting structures resemble navigable small-world networks, which spans along clusters of nodes that have similar subscriptions. The properties of such overlays make them an ideal platform for efficient data dissemination in large-scale systems. The systems requires only a bounded node degree and as we show, through simulations, they scale well with the number of nodes and subscriptions and remain efficient under highly complex subscription patterns, high publication rates, and even in the presence of failures in the network. We also compare both systems against some state-of-the-art publish/subscribe systems. Our measurements show that both Vitis and Vinifera significantly outperform their counterparts on various subscription and churn scenarios, under both synthetic workloads and real-world traces

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    Crux: Locality-Preserving Distributed Services

    Full text link
    Distributed systems achieve scalability by distributing load across many machines, but wide-area deployments can introduce worst-case response latencies proportional to the network's diameter. Crux is a general framework to build locality-preserving distributed systems, by transforming an existing scalable distributed algorithm A into a new locality-preserving algorithm ALP, which guarantees for any two clients u and v interacting via ALP that their interactions exhibit worst-case response latencies proportional to the network latency between u and v. Crux builds on compact-routing theory, but generalizes these techniques beyond routing applications. Crux provides weak and strong consistency flavors, and shows latency improvements for localized interactions in both cases, specifically up to several orders of magnitude for weakly-consistent Crux (from roughly 900ms to 1ms). We deployed on PlanetLab locality-preserving versions of a Memcached distributed cache, a Bamboo distributed hash table, and a Redis publish/subscribe. Our results indicate that Crux is effective and applicable to a variety of existing distributed algorithms.Comment: 11 figure

    Content Distribution in P2P Systems

    Get PDF
    The report provides a literature review of the state-of-the-art for content distribution. The report's contributions are of threefold. First, it gives more insight into traditional Content Distribution Networks (CDN), their requirements and open issues. Second, it discusses Peer-to-Peer (P2P) systems as a cheap and scalable alternative for CDN and extracts their design challenges. Finally, it evaluates the existing P2P systems dedicated for content distribution according to the identied requirements and challenges
    corecore