165 research outputs found

    Reconfigurable Video Coding on multicore : an overview of its main objectives

    Get PDF
    International audienceThe current monolithic and lengthy scheme behind the standardization and the design of new video coding standards is becoming inappropriate to satisfy the dynamism and changing needs of the video coding community. Such scheme and specification formalism does not allow the clear commonalities between the different codecs to be shown, at the level of the specification nor at the level of the implementation. Such a problem is one of the main reasons for the typically long interval elapsing between the time a new idea is validated until it is implemented in consumer products as part of a worldwide standard. The analysis of this problem originated a new standard initiative within the International Organization for Standardization (ISO)/ International Electrotechnical Commission (IEC) Moving Pictures Experts Group (MPEG) committee, namely Reconfigurable Video Coding (RVC). The main idea is to develop a video coding standard that overcomes many shortcomings of the current standardization and specification process by updating and progressively incrementing a modular library of components. As the name implies, flexibility and reconfigurability are new attractive features of the RVC standard. Besides allowing for the definition of new codec algorithms, such features, as well as the dataflow-based specification formalism, open the way to define video coding standards that expressly target implementations on platforms with multiple cores. This article provides an overview of the main objectives of the new RVC standard, with an emphasis on the features that enable efficient implementation on platforms with multiple cores. A brief introduction to the methodologies that efficiently map RVC codec specifications to multicore platforms is accompanied with an example of the possible breakthroughs that are expected to occur in the design and deployment of multimedia services on multicore platforms

    WG1N5315 - Response to Call for AIC evaluation methodologies and compression technologies for medical images: LAR Codec

    Get PDF
    This document presents the LAR image codec as a response to Call for AIC evaluation methodologies and compression technologies for medical images.This document describes the IETR response to the specific call for contributions of medical imaging technologies to be considered for AIC. The philosophy behind our coder is not to outperform JPEG2000 in compression; our goal is to propose an open source, royalty free, alternative image coder with integrated services. While keeping the compression performances in the same range as JPEG2000 but with lower complexity, our coder also provides services such as scalability, cryptography, data hiding, lossy to lossless compression, region of interest, free region representation and coding

    Mengenal pasti tahap pengetahuan pelajar tahun akhir Ijazah Sarjana Muda Kejuruteraan di KUiTTHO dalam bidang keusahawanan dari aspek pengurusan modal

    Get PDF
    Malaysia ialah sebuah negara membangun di dunia. Dalam proses pembangunan ini, hasrat negara untuk melahirkan bakal usahawan beijaya tidak boleh dipandang ringan. Oleh itu, pengetahuan dalam bidang keusahawanan perlu diberi perhatian dengan sewajarnya; antara aspek utama dalam keusahawanan ialah modal. Pengurusan modal yang tidak cekap menjadi punca utama kegagalan usahawan. Menyedari hakikat ini, kajian berkaitan Pengurusan Modal dijalankan ke atas 100 orang pelajar Tahun Akhir Kejuruteraan di KUiTTHO. Sampel ini dipilih kerana pelajar-pelajar ini akan menempuhi alam pekeijaan di mana mereka boleh memilih keusahawanan sebagai satu keijaya. Walau pun mereka bukanlah pelajar dari jurusan perniagaan, namun mereka mempunyai kemahiran dalam mereka cipta produk yang boleh dikomersialkan. Hasil dapatan kajian membuktikan bahawa pelajar-pelajar ini berminat dalam bidang keusahawanan namun masih kurang pengetahuan tentang pengurusan modal terutamanya dalam menentukan modal permulaan, pengurusan modal keija dan caracara menentukan pembiayaan kewangan menggunakan kaedah jualan harian. Oleh itu, satu garis panduan Pengurusan Modal dibina untuk memberi pendedahan kepada mereka

    Translating Timing into an Architecture: The Synergy of COTSon and HLS (Domain Expertise: Designing a Computer Architecture via HLS)

    Get PDF
    Translating a system requirement into a low-level representation (e.g., register transfer level or RTL) is the typical goal of the design of FPGA-based systems. However, the Design Space Exploration (DSE) needed to identify the final architecture may be time consuming, even when using high-level synthesis (HLS) tools. In this article, we illustrate our hybrid methodology, which uses a frontend for HLS so that the DSE is performed more rapidly by using a higher level abstraction, but without losing accuracy, thanks to the HP-Labs COTSon simulation infrastructure in combination with our DSE tools (MYDSE tools). In particular, this proposed methodology proved useful to achieve an appropriate design of a whole system in a shorter time than trying to design everything directly in HLS. Our motivating problem was to deploy a novel execution model called data-flow threads (DF-Threads) running on yet-to-be-designed hardware. For that goal, directly using the HLS was too premature in the design cycle. Therefore, a key point of our methodology consists in defining the first prototype in our simulation framework and gradually migrating the design into the Xilinx HLS after validating the key performance metrics of our novel system in the simulator. To explain this workflow, we first use a simple driving example consisting in the modelling of a two-way associative cache. Then, we explain how we generalized this methodology and describe the types of results that we were able to analyze in the AXIOM project, which helped us reduce the development time from months/weeks to days/hours

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Error tolerant multimedia stream processing: There's plenty of room at the top (of the system stack)

    Get PDF
    There is a growing realization that the expected fault rates and energy dissipation stemming from increases in CMOS integration will lead to the abandonment of traditional system reliability in favor of approaches that offer reliability to hardware-induced errors across the application, runtime support, architecture, device and integrated-circuit (IC) layers. Commercial stakeholders of multimedia stream processing (MSP) applications, such as information retrieval, stream mining systems, and high-throughput image and video processing systems already feel the strain of inadequate system-level scaling and robustness under the always-increasing user demand. While such applications can tolerate certain imprecision in their results, today's MSP systems do not support a systematic way to exploit this aspect for cross-layer system resilience. However, research is currently emerging that attempts to utilize the error-tolerant nature of MSP applications for this purpose. This is achieved by modifications to all layers of the system stack, from algorithms and software to the architecture and device layer, and even the IC digital logic synthesis itself. Unlike conventional processing that aims for worst-case performance and accuracy guarantees, error-tolerant MSP attempts to provide guarantees for the expected performance and accuracy. In this paper we review recent advances in this field from an MSP and a system (layer-by-layer) perspective, and attempt to foresee some of the components of future cross-layer error-tolerant system design that may influence the multimedia and the general computing landscape within the next ten years. © 1999-2012 IEEE

    Multi-core platforms for audio and multimedia coding algorithms in telecommunications

    Get PDF
    TietoliikenteessÀ kÀytettÀvÀt multimedian koodausalgoritmit eli koodekit kehittyvÀt jatkuvasti. USAC ja Opus ovat uusia, sekÀ puheelle ettÀ musiikille soveltuvia audiokoodekkeja. Molemmat ovat sijoittuneet korkealle koodekkien ÀÀnenlaatua vertailevissa tutkimuksissa. NÀiden keskeisiÀ ominaisuuksia kÀsitellÀÀn kirjallisuuskatsaukseen perustuen. Varsinkin HD-tasoisen videon kÀsittelyssÀ kÀytettÀvÀt koodekit vaativat suurta laskentatehoa. Tilera TILEPro64 -moniydinsuorittimen ja sille optimoitujen multimediakoodekkien suorituskykyÀ testattiin tarkoitukseen suunnitelluilla tietokoneohjelmilla. Tulokset osoittivat, ettÀ suoritinytimiÀ lisÀttÀessÀ videon koodausalgoritmien suoritusnopeus kasvaa tiettyyn rajaan asti. Testatuilla ÀÀnen koodausalgoritmeillÀ ytimien lisÀÀminen ei parantanut suoritusnopeutta. Tileran moniydinratkaisuja verrattiin lopuksi Freescalen ja Texas Instrumentsin moniydinratkaisuihin. Huolimatta eroista laitteistoarkkitehtuureissa, kyseisten toimittajien kehitystyökaluissa todettiin olevan paljon samoja piirteitÀ.Multimedia coding algorithms used in telecommunications evolve constantly. Benefits and properties of two new hybrid audio codecs (USAC, Opus) were reviewed on a high level as a literature study. It was found that both have succeeded well in subjective sound quality measurements. Tilera TILEPro64-multicore platform and a related software library was evaluated in terms of performance in multimedia coding. The performance in video coding was found to increase with the number of processing cores up to a certain point. With the tested audio codecs, increasing the number of cores did not increase coding performance. Additionally, multicore products of Tilera, Texas Instruments and Freescale were compared. Development tools of all three vendors were found to have similar features, despite the differences in hardware architectures

    Techniques of design optimisation for algorithms implemented in software

    Get PDF
    The overarching objective of this thesis was to develop tools for parallelising, optimising, and implementing algorithms on parallel architectures, in particular General Purpose Graphics Processors (GPGPUs). Two projects were chosen from different application areas in which GPGPUs are used: a defence application involving image compression, and a modelling application in bioinformatics (computational immunology). Each project had its own specific objectives, as well as supporting the overall research goal. The defence / image compression project was carried out in collaboration with the Jet Propulsion Laboratories. The specific questions were: to what extent an algorithm designed for bit-serial for the lossless compression of hyperspectral images on-board unmanned vehicles (UAVs) in hardware could be parallelised, whether GPGPUs could be used to implement that algorithm, and whether a software implementation with or without GPGPU acceleration could match the throughput of a dedicated hardware (FPGA) implementation. The dependencies within the algorithm were analysed, and the algorithm parallelised. The algorithm was implemented in software for GPGPU, and optimised. During the optimisation process, profiling revealed less than optimal device utilisation, but no further optimisations resulted in an improvement in speed. The design had hit a local-maximum of performance. Analysis of the arithmetic intensity and data-flow exposed flaws in the standard optimisation metric of kernel occupancy used for GPU optimisation. Redesigning the implementation with revised criteria (fused kernels, lower occupancy, and greater data locality) led to a new implementation with 10x higher throughput. GPGPUs were shown to be viable for on-board implementation of the CCSDS lossless hyperspectral image compression algorithm, exceeding the performance of the hardware reference implementation, and providing sufficient throughput for the next generation of image sensor as well. The second project was carried out in collaboration with biologists at the University of Arizona and involved modelling a complex biological system – VDJ recombination involved in the formation of T-cell receptors (TCRs). Generation of immune receptors (T cell receptor and antibodies) by VDJ recombination is an enormously complex process, which can theoretically synthesize greater than 1018 variants. Originally thought to be a random process, the underlying mechanisms clearly have a non-random nature that preferentially creates a small subset of immune receptors in many individuals. Understanding this bias is a longstanding problem in the field of immunology. Modelling the process of VDJ recombination to determine the number of ways each immune receptor can be synthesized, previously thought to be untenable, is a key first step in determining how this special population is made. The computational tools developed in this thesis have allowed immunologists for the first time to comprehensively test and invalidate a longstanding theory (convergent recombination) for how this special population is created, while generating the data needed to develop novel hypothesis

    Preserving data integrity of encoded medical images: the LAR compression framework

    Get PDF
    International audienceThrough the development of medical imaging systems and their integration into a complete information system, the need for advanced joint coding and network services becomes predominant. PACS (Picture Archiving and Communication System) aims to acquire, store and compress, retrieve, present and distribute medical images. These systems have to be accessible via the Internet or wireless channels. Thus protection processes against transmission errors have to be added to get a powerful joint source-channel coding tool. Moreover, these sensitive data require confidentiality and privacy for both archiving and transmission purposes, leading to use cryptography and data embedding solutions. This chapter introduces data integrity protection and developed dedicated tools of content protection and secure bitstream transmission for medical encoded image purposes. In particular, the LAR image coding method is defined together with advanced securization services
    • 

    corecore