132 research outputs found

    Context-Aware Generative Adversarial Privacy

    Full text link
    Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy, achieve an improved privacy-utility tradeoff, but assume that the data holder has access to dataset statistics. We circumvent these limitations by introducing a novel context-aware privacy framework called generative adversarial privacy (GAP). GAP leverages recent advancements in generative adversarial networks (GANs) to allow the data holder to learn privatization schemes from the dataset itself. Under GAP, learning the privacy mechanism is formulated as a constrained minimax game between two players: a privatizer that sanitizes the dataset in a way that limits the risk of inference attacks on the individuals' private variables, and an adversary that tries to infer the private variables from the sanitized dataset. To evaluate GAP's performance, we investigate two simple (yet canonical) statistical dataset models: (a) the binary data model, and (b) the binary Gaussian mixture model. For both models, we derive game-theoretically optimal minimax privacy mechanisms, and show that the privacy mechanisms learned from data (in a generative adversarial fashion) match the theoretically optimal ones. This demonstrates that our framework can be easily applied in practice, even in the absence of dataset statistics.Comment: Improved version of a paper accepted by Entropy Journal, Special Issue on Information Theory in Machine Learning and Data Scienc

    Private Set Generation with Discriminative Information

    Full text link
    Differentially private data generation techniques have become a promising solution to the data privacy challenge -- it enables sharing of data while complying with rigorous privacy guarantees, which is essential for scientific progress in sensitive domains. Unfortunately, restricted by the inherent complexity of modeling high-dimensional distributions, existing private generative models are struggling with the utility of synthetic samples. In contrast to existing works that aim at fitting the complete data distribution, we directly optimize for a small set of samples that are representative of the distribution under the supervision of discriminative information from downstream tasks, which is generally an easier task and more suitable for private training. Our work provides an alternative view for differentially private generation of high-dimensional data and introduces a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.Comment: NeurIPS 2022, 19 page

    Differentially Private Image Classification from Features

    Full text link
    Leveraging transfer learning has recently been shown to be an effective strategy for training large models with Differential Privacy (DP). Moreover, somewhat surprisingly, recent works have found that privately training just the last layer of a pre-trained model provides the best utility with DP. While past studies largely rely on algorithms like DP-SGD for training large models, in the specific case of privately learning from features, we observe that computational burden is low enough to allow for more sophisticated optimization schemes, including second-order methods. To that end, we systematically explore the effect of design parameters such as loss function and optimization algorithm. We find that, while commonly used logistic regression performs better than linear regression in the non-private setting, the situation is reversed in the private setting. We find that linear regression is much more effective than logistic regression from both privacy and computational aspects, especially at stricter epsilon values (ϵ<1\epsilon < 1). On the optimization side, we also explore using Newton's method, and find that second-order information is quite helpful even with privacy, although the benefit significantly diminishes with stricter privacy guarantees. While both methods use second-order information, least squares is effective at lower epsilons while Newton's method is effective at larger epsilon values. To combine the benefits of both, we propose a novel algorithm called DP-FC, which leverages feature covariance instead of the Hessian of the logistic regression loss and performs well across all ϵ\epsilon values we tried. With this, we obtain new SOTA results on ImageNet-1k, CIFAR-100 and CIFAR-10 across all values of ϵ\epsilon typically considered. Most remarkably, on ImageNet-1K, we obtain top-1 accuracy of 88\% under (8, 81078 * 10^{-7})-DP and 84.3\% under (0.1, 81078 * 10^{-7})-DP

    DataPerf: Benchmarks for Data-Centric AI Development

    Full text link
    Machine learning research has long focused on models rather than datasets, and prominent datasets are used for common ML tasks without regard to the breadth, difficulty, and faithfulness of the underlying problems. Neglecting the fundamental importance of data has given rise to inaccuracy, bias, and fragility in real-world applications, and research is hindered by saturation across existing dataset benchmarks. In response, we present DataPerf, a community-led benchmark suite for evaluating ML datasets and data-centric algorithms. We aim to foster innovation in data-centric AI through competition, comparability, and reproducibility. We enable the ML community to iterate on datasets, instead of just architectures, and we provide an open, online platform with multiple rounds of challenges to support this iterative development. The first iteration of DataPerf contains five benchmarks covering a wide spectrum of data-centric techniques, tasks, and modalities in vision, speech, acquisition, debugging, and diffusion prompting, and we support hosting new contributed benchmarks from the community. The benchmarks, online evaluation platform, and baseline implementations are open source, and the MLCommons Association will maintain DataPerf to ensure long-term benefits to academia and industry.Comment: NeurIPS 2023 Datasets and Benchmarks Trac

    Big Data Testing Techniques: Taxonomy, Challenges and Future Trends

    Full text link
    Big Data is reforming many industrial domains by providing decision support through analyzing large data volumes. Big Data testing aims to ensure that Big Data systems run smoothly and error-free while maintaining the performance and quality of data. However, because of the diversity and complexity of data, testing Big Data is challenging. Though numerous research efforts deal with Big Data testing, a comprehensive review to address testing techniques and challenges of Big Data is not available as yet. Therefore, we have systematically reviewed the Big Data testing techniques evidence occurring in the period 2010-2021. This paper discusses testing data processing by highlighting the techniques used in every processing phase. Furthermore, we discuss the challenges and future directions. Our findings show that diverse functional, non-functional and combined (functional and non-functional) testing techniques have been used to solve specific problems related to Big Data. At the same time, most of the testing challenges have been faced during the MapReduce validation phase. In addition, the combinatorial testing technique is one of the most applied techniques in combination with other techniques (i.e., random testing, mutation testing, input space partitioning and equivalence testing) to find various functional faults through Big Data testing.Comment: 32 page

    Wild Patterns Reloaded: A Survey of Machine Learning Security against Training Data Poisoning

    Get PDF
    The success of machine learning is fueled by the increasing availability of computing power and large training datasets. The training data is used to learn new models or update existing ones, assuming that it is sufficiently representative of the data that will be encountered at test time. This assumption is challenged by the threat of poisoning, an attack that manipulates the training data to compromise the model's performance at test time. Although poisoning has been acknowledged as a relevant threat in industry applications, and a variety of different attacks and defenses have been proposed so far, a complete systematization and critical review of the field is still missing. In this survey, we provide a comprehensive systematization of poisoning attacks and defenses in machine learning, reviewing more than 100 papers published in the field in the last 15 years. We start by categorizing the current threat models and attacks, and then organize existing defenses accordingly. While we focus mostly on computer-vision applications, we argue that our systematization also encompasses state-of-the-art attacks and defenses for other data modalities. Finally, we discuss existing resources for research in poisoning, and shed light on the current limitations and open research questions in this research field

    Unknown Threat Detection With Honeypot Ensemble Analsyis Using Big Datasecurity Architecture

    Get PDF
    The amount of data that is being generated continues to rapidly grow in size and complexity. Frameworks such as Apache Hadoop and Apache Spark are evolving at a rapid rate as organizations are building data driven applications to gain competitive advantages. Data analytics frameworks decomposes our problems to build applications that are more than just inference and can help make predictions as well as prescriptions to problems in real time instead of batch processes. Information Security is becoming more important to organizations as the Internet and cloud technologies become more integrated with their internal processes. The number of attacks and attack vectors has been increasing steadily over the years. Border defense measures (e.g. Intrusion Detection Systems) are no longer enough to identify and stop attackers. Data driven information security is not a new approach to solving information security; however there is an increased emphasis on combining heterogeneous sources to gain a broader view of the problem instead of isolated systems. Stitching together multiple alerts into a cohesive system can increase the number of True Positives. With the increased concern of unknown insider threats and zero-day attacks, identifying unknown attack vectors becomes more difficult. Previous research has shown that with as little as 10 commands it is possible to identify a masquerade attack against a user\u27s profile. This thesis is going to look at a data driven information security architecture that relies on both behavioral analysis of SSH profiles and bad actor data collected from an SSH honeypot to identify bad actor attack vectors. Honeypots should collect only data from bad actors; therefore have a high True Positive rate. Using Apache Spark and Apache Hadoop we can create a real time data driven architecture that can collect and analyze new bad actor behaviors from honeypot data and monitor legitimate user accounts to create predictive and prescriptive models. Previously unidentified attack vectors can be cataloged for review
    corecore