2,590 research outputs found

    A perceptual hash function to store and retrieve large scale DNA sequences

    Full text link
    This paper proposes a novel approach for storing and retrieving massive DNA sequences.. The method is based on a perceptual hash function, commonly used to determine the similarity between digital images, that we adapted for DNA sequences. Perceptual hash function presented here is based on a Discrete Cosine Transform Sign Only (DCT-SO). Each nucleotide is encoded as a fixed gray level intensity pixel and the hash is calculated from its significant frequency characteristics. This results to a drastic data reduction between the sequence and the perceptual hash. Unlike cryptographic hash functions, perceptual hashes are not affected by "avalanche effect" and thus can be compared. The similarity distance between two hashes is estimated with the Hamming Distance, which is used to retrieve DNA sequences. Experiments that we conducted show that our approach is relevant for storing massive DNA sequences, and retrieving them

    The aceToolbox: low-level audiovisual feature extraction for retrieval and classification

    Get PDF
    In this paper we present an overview of a software platform that has been developed within the aceMedia project, termed the aceToolbox, that provides global and local lowlevel feature extraction from audio-visual content. The toolbox is based on the MPEG-7 eXperimental Model (XM), with extensions to provide descriptor extraction from arbitrarily shaped image segments, thereby supporting local descriptors reflecting real image content. We describe the architecture of the toolbox as well as providing an overview of the descriptors supported to date. We also briefly describe the segmentation algorithm provided. We then demonstrate the usefulness of the toolbox in the context of two different content processing scenarios: similarity-based retrieval in large collections and scene-level classification of still images

    Identifying person re-occurrences for personal photo management applications

    Get PDF
    Automatic identification of "who" is present in individual digital images within a photo management system using only content-based analysis is an extremely difficult problem. The authors present a system which enables identification of person reoccurrences within a personal photo management application by combining image content-based analysis tools with context data from image capture. This combined system employs automatic face detection and body-patch matching techniques, which collectively facilitate identifying person re-occurrences within images grouped into events based on context data. The authors introduce a face detection approach combining a histogram-based skin detection model and a modified BDF face detection method to detect multiple frontal faces in colour images. Corresponding body patches are then automatically segmented relative to the size, location and orientation of the detected faces in the image. The authors investigate the suitability of using different colour descriptors, including MPEG-7 colour descriptors, color coherent vectors (CCV) and color correlograms for effective body-patch matching. The system has been successfully integrated into the MediAssist platform, a prototype Web-based system for personal photo management, and runs on over 13000 personal photos

    Dynamically Reconfigurable Architectures and Systems for Time-varying Image Constraints (DRASTIC) for Image and Video Compression

    Get PDF
    In the current information booming era, image and video consumption is ubiquitous. The associated image and video coding operations require significant computing resources for both small-scale computing systems as well as over larger network systems. For different scenarios, power, bitrate and image quality can impose significant time-varying constraints. For example, mobile devices (e.g., phones, tablets, laptops, UAVs) come with significant constraints on energy and power. Similarly, computer networks provide time-varying bandwidth that can depend on signal strength (e.g., wireless networks) or network traffic conditions. Alternatively, the users can impose different constraints on image quality based on their interests. Traditional image and video coding systems have focused on rate-distortion optimization. More recently, distortion measures (e.g., PSNR) are being replaced by more sophisticated image quality metrics. However, these systems are based on fixed hardware configurations that provide limited options over power consumption. The use of dynamic partial reconfiguration with Field Programmable Gate Arrays (FPGAs) provides an opportunity to effectively control dynamic power consumption by jointly considering software-hardware configurations. This dissertation extends traditional rate-distortion optimization to rate-quality-power/energy optimization and demonstrates a wide variety of applications in both image and video compression. In each application, a family of Pareto-optimal configurations are developed that allow fine control in the rate-quality-power/energy optimization space. The term Dynamically Reconfiguration Architecture Systems for Time-varying Image Constraints (DRASTIC) is used to describe the derived systems. DRASTIC covers both software-only as well as software-hardware configurations to achieve fine optimization over a set of general modes that include: (i) maximum image quality, (ii) minimum dynamic power/energy, (iii) minimum bitrate, and (iv) typical mode over a set of opposing constraints to guarantee satisfactory performance. In joint software-hardware configurations, DRASTIC provides an effective approach for dynamic power optimization. For software configurations, DRASTIC provides an effective method for energy consumption optimization by controlling processing times. The dissertation provides several applications. First, stochastic methods are given for computing quantization tables that are optimal in the rate-quality space and demonstrated on standard JPEG compression. Second, a DRASTIC implementation of the DCT is used to demonstrate the effectiveness of the approach on motion JPEG. Third, a reconfigurable deblocking filter system is investigated for use in the current H.264/AVC systems. Fourth, the dissertation develops DRASTIC for all 35 intra-prediction modes as well as intra-encoding for the emerging High Efficiency Video Coding standard (HEVC)

    Leveraging Deep Visual Descriptors for Hierarchical Efficient Localization

    Full text link
    Many robotics applications require precise pose estimates despite operating in large and changing environments. This can be addressed by visual localization, using a pre-computed 3D model of the surroundings. The pose estimation then amounts to finding correspondences between 2D keypoints in a query image and 3D points in the model using local descriptors. However, computational power is often limited on robotic platforms, making this task challenging in large-scale environments. Binary feature descriptors significantly speed up this 2D-3D matching, and have become popular in the robotics community, but also strongly impair the robustness to perceptual aliasing and changes in viewpoint, illumination and scene structure. In this work, we propose to leverage recent advances in deep learning to perform an efficient hierarchical localization. We first localize at the map level using learned image-wide global descriptors, and subsequently estimate a precise pose from 2D-3D matches computed in the candidate places only. This restricts the local search and thus allows to efficiently exploit powerful non-binary descriptors usually dismissed on resource-constrained devices. Our approach results in state-of-the-art localization performance while running in real-time on a popular mobile platform, enabling new prospects for robotics research.Comment: CoRL 2018 Camera-ready (fix typos and update citations

    GeoLens: enabling interactive visual analytics over large-scale, multidimensional geospatial datasets

    Get PDF
    2015 Spring.Includes bibliographical references.With the rapid increase of scientific data volumes, interactive tools that enable effective visual representation for scientists are needed. This is critical when scientists are manipulating voluminous datasets and especially when they need to explore datasets interactively to develop their hypotheses. In this paper, we present an interactive visual analytics framework, GeoLens. GeoLens provides fast and expressive interactions with voluminous geospatial datasets. We provide an expressive visual query evaluation scheme to support advanced interactive visual analytics technique, such as brushing and linking. To achieve this, we designed and developed the geohash based image tile generation algorithm that automatically adjusts the range of data to access based on the minimum acceptable size of the image tile. In addition, we have also designed an autonomous histogram generation algorithm that generates histograms of user-defined data subsets that do not have pre-computed data properties. Using our approach, applications can generate histograms of datasets containing millions of data points with sub-second latency. The work builds on our visual query coordinating scheme that evaluates geospatial query and orchestrates data aggregation in a distributed storage environment while preserving data locality and minimizing data movements. This paper includes empirical benchmarks of our framework encompassing a billion-file dataset published by the National Climactic Data Center
    corecore