477 research outputs found

    Electronic and photonic switching in the atm era

    Get PDF
    Broadband networks require high-capacity switches in order to properly manage large amounts of traffic fluxes. Electronic and photonic technologies are being used to achieve this objective both allowing different multiplexing and switching techniques. Focusing on the asynchronous transfer mode (ATM), the inherent different characteristics of electronics and photonics makes different architectures feasible. In this paper, different switching structures are described, several ATM switching architectures which have been recently implemented are presented and the implementation characteristics discussed. Three diverse points of view are given from the electronic research, the photonic research and the commercial switches. Although all the architectures where successfully tested, they should also follow different market requirements in order to be commercialised. The characteristics are presented and the architectures projected over them to evaluate their commercial capabilities.Peer ReviewedPostprint (published version

    Inside all-optical networks

    Get PDF
    Imagine a world where lightning speed Internet is as common as telephones today. Imagine when light, the fastest moving thing in the universe, is the signal-carrying transport medium. Imagine when bandwidth no more remains a constraint for any application. Imagine when imagination is the only limit! This all can be made possible with only one technology and that is optical communication. Optical networks have thus far provided a realization to a greater extent to the unlimited bandwidth dreams of this era, but as the demands are increasing, the electro-optic conversions seem to become bottlenecks in blended optical networks. The only answer to this is a complete migration to `All-Optical Networks\u27 (AONs) which promise an end-to-end optical transmission. This thesis will investigate various aspects of all-optical networks and prove that AONs perform better than currently existing electro-optical networks. In today\u27s\u27 electro-optical networks, routing and switching is performed in electronic domain. Performance analysis of electro-optical and all-optical networks would include node utilization, link utilization and percentage of traffic routed. It will be shown through Opnet Transport Planner simulations that AONs work better under various traffic conditions. The coming decade will see a great boom in demands on telecommunications networks. The development in bandwidth-hungry applications like real-time video transmission, telemedicine, distance learning and video on demand require both an unlimited amount of bandwidth and dependable QoS. It is well understood that electrically switched networks and copper cables will not be able to meet the future network demands effectively. The world has already agreed to move towards optical communication techniques through the introduction of fiber in access parts of the networks replacing copper. Now the race is to bring optics in higher layers of OSI reference model. Optical communication is on the horizon, and new discoveries are still underway to add to the value of available bandwidth through this technology. My research thesis will primarily focus on the design, architecture and network properties of AONs and challenges being faced by AONs in commercial deployment. Optical components required in AONs will be explored. A comparison between AONs and electro-optical networks will also be shown through optical transport planner simulations

    Metropolitan all-pass and inter-city quantum communication network

    Full text link
    We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60km.Comment: 9 pages, 2 figures, 2 table

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    Optical fibre local area networks

    Get PDF

    Architectures Technologies and Energy Efficiency of Optical Networks

    Get PDF
    The Increasing of today\u27s Internet services as are online video gaming, video games, video conferencing and video on demand in terms of multicasting has changed the concept of the classical approach to the networks because these services requires broadband frequency for data communication. The rapid expansion of the customer network, require wide bandwidth and increasing of energy expenditures. To gain energy efficiency we propose a novel architecture. The solution of these problems is solved by using of passive optical networks which are able to transmit data simultaneously in a broadband communication by using of optical multiplexers. The important parameters on the designing of an optical telecommunication network are energy consumption and energy efficiency of the network

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study
    • 

    corecore