100 research outputs found

    GPU accelerated multispectral EO imagery optimised CCSDS-123 lossless compression implementation

    Get PDF
    Continual advancements in Earth Observation (EO) optical imager payloads has led to a significant increase in the volume of multispectral data generated onboard EO satellites. As a result, a growing onboard data bottleneck need to be alleviated. One technique commonly used is onboard image compression. However, the performance of traditional space qualified processors, such as radiation hardened FPGAs, are not able to meet current nor future onboard data processing requirements. Therefore, a new high capability hardware architecture is required. In previous work a new GPU accelerated scalable heterogeneous hardware architecture for onboard data processing was proposed. In this paper, two new CUDA GPU implementations of the state-of-the-art lossless multidimensional image compression algorithm CCSDS-123, are discussed. The first implementation is a generic CUDA implementation of the CCSDS-123 algorithm whilst the second is optimised specifically for multispectral EO imagery. Both implementations utilise image tiling to leverage an additional axis for algorithm parallelisation to increase processing throughput. The CUDA implementation and optimisation techniques deployed are discussed in the paper. In addition, compression ratio and throughput performance results are presented for each implementation. Further experimental studies into the relationships between algorithm user definable compression parameters, tile sizes, tile dimensions and the achieved compression ratio and throughput, were performed

    Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding

    Get PDF
    Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    Evaluation and implementation of an auto-encoder for compression of satellite images in the ScOSA project

    Get PDF
    The thesis evaluates the efficiency of various autoencoder neural networks for image compression regarding satellite imagery. The results highlight the evaluation and implementation of autoencoder architectures and the procedures required to deploy neural networks to reliable embedded devices. The developed autoencoders evaluated, targeting a ZYNQ 7020 FPGA (Field Programmable Gate Array) and a ZU7EV FPGA

    Evaluation and implementation of an auto-encoder for compression of satellite images in the ScOSA project

    Get PDF
    The thesis evaluates the efficiency of various autoencoder neural networks for image compression regarding satellite imagery. The results highlight the evaluation and implementation of autoencoder architectures and the procedures required to deploy neural networks to reliable embedded devices. The developed autoencoders evaluated, targeting a ZYNQ 7020 FPGA (Field Programmable Gate Array) and a ZU7EV FPGA

    Performance impact of parameter tuning on the CCSDS-123.0-B-2 low-complexity lossless and near-lossless multispectral and Hyperspectral Image Compression standard

    Get PDF
    This article studies the performance impact related to different parameter choices for the new CCSDS-123.0-B-2 Low-Complexity Lossless and Near-Lossless Multispectral and Hyperspectral Image Compression standard. This standard supersedes CCSDS-123.0-B-1 and extends it by incorporating a new near-lossless compression capability, as well as other new features. This article studies the coding performance impact of different choices for the principal parameters of the new extensions, in addition to reviewing related parameter choices for existing features. Experimental results include data from 16 different instruments with varying detector types, image dimensions, number of spectral bands, bit depth, level of noise, level of calibration, and other image characteristics. Guidelines are provided on how to adjust the parameters in relation to their coding performance impact

    Efficient architectures of heterogeneous fpga-gpu for 3-d medical image compression

    Get PDF
    The advent of development in three-dimensional (3-D) imaging modalities have generated a massive amount of volumetric data in 3-D images such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US). Existing survey reveals the presence of a huge gap for further research in exploiting reconfigurable computing for 3-D medical image compression. This research proposes an FPGA based co-processing solution to accelerate the mentioned medical imaging system. The HWT block implemented on the sbRIO-9632 FPGA board is Spartan 3 (XC3S2000) chip prototyping board. Analysis and performance evaluation of the 3-D images were been conducted. Furthermore, a novel architecture of context-based adaptive binary arithmetic coder (CABAC) is the advanced entropy coding tool employed by main and higher profiles of H.264/AVC. This research focuses on GPU implementation of CABAC and comparative study of discrete wavelet transform (DWT) and without DWT for 3-D medical image compression systems. Implementation results on MRI and CT images, showing GPU significantly outperforming single-threaded CPU implementation. Overall, CT and MRI modalities with DWT outperform in term of compression ratio, peak signal to noise ratio (PSNR) and latency compared with images without DWT process. For heterogeneous computing, MRI images with various sizes and format, such as JPEG and DICOM was implemented. Evaluation results are shown for each memory iteration, transfer sizes from GPU to CPU consuming more bandwidth or throughput. For size 786, 486 bytes JPEG format, both directions consumed bandwidth tend to balance. Bandwidth is relative to the transfer size, the larger sizing will take more latency and throughput. Next, OpenCL implementation for concurrent task via dedicated FPGA. Finding from implementation reveals, OpenCL on batch procession mode with AOC techniques offers substantial results where the amount of logic, area, register and memory increased proportionally to the number of batch. It is because of the kernel will copy the kernel block refer to batch number. Therefore memory bank increased periodically related to kernel block. It was found through comparative study that the tree balance and unroll loop architecture provides better achievement, in term of local memory, latency and throughput

    Techniques of design optimisation for algorithms implemented in software

    Get PDF
    The overarching objective of this thesis was to develop tools for parallelising, optimising, and implementing algorithms on parallel architectures, in particular General Purpose Graphics Processors (GPGPUs). Two projects were chosen from different application areas in which GPGPUs are used: a defence application involving image compression, and a modelling application in bioinformatics (computational immunology). Each project had its own specific objectives, as well as supporting the overall research goal. The defence / image compression project was carried out in collaboration with the Jet Propulsion Laboratories. The specific questions were: to what extent an algorithm designed for bit-serial for the lossless compression of hyperspectral images on-board unmanned vehicles (UAVs) in hardware could be parallelised, whether GPGPUs could be used to implement that algorithm, and whether a software implementation with or without GPGPU acceleration could match the throughput of a dedicated hardware (FPGA) implementation. The dependencies within the algorithm were analysed, and the algorithm parallelised. The algorithm was implemented in software for GPGPU, and optimised. During the optimisation process, profiling revealed less than optimal device utilisation, but no further optimisations resulted in an improvement in speed. The design had hit a local-maximum of performance. Analysis of the arithmetic intensity and data-flow exposed flaws in the standard optimisation metric of kernel occupancy used for GPU optimisation. Redesigning the implementation with revised criteria (fused kernels, lower occupancy, and greater data locality) led to a new implementation with 10x higher throughput. GPGPUs were shown to be viable for on-board implementation of the CCSDS lossless hyperspectral image compression algorithm, exceeding the performance of the hardware reference implementation, and providing sufficient throughput for the next generation of image sensor as well. The second project was carried out in collaboration with biologists at the University of Arizona and involved modelling a complex biological system – VDJ recombination involved in the formation of T-cell receptors (TCRs). Generation of immune receptors (T cell receptor and antibodies) by VDJ recombination is an enormously complex process, which can theoretically synthesize greater than 1018 variants. Originally thought to be a random process, the underlying mechanisms clearly have a non-random nature that preferentially creates a small subset of immune receptors in many individuals. Understanding this bias is a longstanding problem in the field of immunology. Modelling the process of VDJ recombination to determine the number of ways each immune receptor can be synthesized, previously thought to be untenable, is a key first step in determining how this special population is made. The computational tools developed in this thesis have allowed immunologists for the first time to comprehensively test and invalidate a longstanding theory (convergent recombination) for how this special population is created, while generating the data needed to develop novel hypothesis
    corecore