4,550 research outputs found

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    MiPOS - the Mote Indoor Positioning System

    Get PDF
    In the past few years, there have been huge research efforts into ubiquitous and context aware platforms that offer a user a custom level of service based on some known local parameters. The utility of such systems is greatly enhanced if a physical locational area can be determined. Recently, hybrid devices have been developed combining low power micro controllers with short range FM radio transceivers. Some location identification work has been carried out with these systems such as the Matrix Pencil approximation technique[8],however most of these all provide information for an ideal square area with no RF obstructions.Here we present MiPOS, a scalable locationing system based on the MICA mote[11] family of devices.The design goal of MiPOS is to provide a low-power, scalable, distributed locationing system suited to an indoor (office) environment.During the presentation of this paper we will highlight solutions in the areas of security, radio and network management and power awareness for a hybrid context aware wearable locationing device

    Evolving SDN for Low-Power IoT Networks

    Get PDF
    Software Defined Networking (SDN) offers a flexible and scalable architecture that abstracts decision making away from individual devices and provides a programmable network platform. However, implementing a centralized SDN architecture within the constraints of a low-power wireless network faces considerable challenges. Not only is controller traffic subject to jitter due to unreliable links and network contention, but the overhead generated by SDN can severely affect the performance of other traffic. This paper addresses the challenge of bringing high-overhead SDN architecture to IEEE 802.15.4 networks. We explore how traditional SDN needs to evolve in order to overcome the constraints of low-power wireless networks, and discuss protocol and architectural optimizations necessary to reduce SDN control overhead - the main barrier to successful implementation. We argue that interoperability with the existing protocol stack is necessary to provide a platform for controller discovery and coexistence with legacy networks. We consequently introduce {\mu}SDN, a lightweight SDN framework for Contiki, with both IPv6 and underlying routing protocol interoperability, as well as optimizing a number of elements within the SDN architecture to reduce control overhead to practical levels. We evaluate {\mu}SDN in terms of latency, energy, and packet delivery. Through this evaluation we show how the cost of SDN control overhead (both bootstrapping and management) can be reduced to a point where comparable performance and scalability is achieved against an IEEE 802.15.4-2012 RPL-based network. Additionally, we demonstrate {\mu}SDN through simulation: providing a use-case where the SDN configurability can be used to provide Quality of Service (QoS) for critical network flows experiencing interference, and we achieve considerable reductions in delay and jitter in comparison to a scenario without SDN

    Key distribution technique for IPTV services with support for admission control and user defined groups

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles

    Get PDF
    This thesis investigates the application of a secure group communication architecture to a swarm of autonomous unmanned aerial vehicles (UAVs). A multicast secure group communication architecture for the low earth orbit (LEO) satellite environment is evaluated to determine if it can be effectively adapted to a swarm of UAVs and provide secure, scalable, and efficient communications. The performance of the proposed security architecture is evaluated with two other commonly used architectures using a discrete event computer simulation developed using MatLab. Performance is evaluated in terms of the scalability and efficiency of the group key distribution and management scheme when the swarm size, swarm mobility, multicast group join and departure rates are varied. The metrics include the total keys distributed over the simulation period, the average number of times an individual UAV must rekey, the average bandwidth used to rekey the swarm, and the average percentage of battery consumed by a UAV to rekey over the simulation period. The proposed security architecture can successfully be applied to a swarm of autonomous UAVs using current technology. The proposed architecture is more efficient and scalable than the other tested and commonly-used architectures. Over all the tested configurations, the proposed architecture distributes 55.2 – 94.8% fewer keys, rekeys 59.0 - 94.9% less often per UAV, uses 55.2 - 87.9% less bandwidth to rekey, and reduces the battery consumption by 16.9 – 85.4%

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Optical fibre local area networks

    Get PDF

    Single Secret Key Crptosystem for Secure and Efficient Exchange of Data in Cloud

    Get PDF
    Nowadays users are storing their personal data on a cloud storage because of its numerous advantages. One of the important advantage in cloud storage is sharing of data between users or between organizations. In this paper we propose a simple, flexible, efficient and secure data sharing method for the cloud users. Here we are describing a special type of public key encryption scheme where public key, master-secret key, single secret key and cipher text sizes are constant. Single secret key can be obtained by combining number of secret keys. The sender can securely share multiple files with receiver by encrypting each file using a separate public key. Then the sender will combine all the public keys to form a single secret key which is exchanged with receiver by using Diffie-Hellman algorithm. Advantage of small single secret key is user can store this decryption key on a resource constraint devices like smart cards, smart cell phones or sensor nodes. Receiver can download the number of files by using single secret key
    • …
    corecore