859 research outputs found

    Acceleration-as-a-Service: Exploiting Virtualised GPUs for a Financial Application

    Get PDF
    'How can GPU acceleration be obtained as a service in a cluster?' This question has become increasingly significant due to the inefficiency of installing GPUs on all nodes of a cluster. The research reported in this paper is motivated to address the above question by employing rCUDA (remote CUDA), a framework that facilitates Acceleration-as-a-Service (AaaS), such that the nodes of a cluster can request the acceleration of a set of remote GPUs on demand. The rCUDA framework exploits virtualisation and ensures that multiple nodes can share the same GPU. In this paper we test the feasibility of the rCUDA framework on a real-world application employed in the financial risk industry that can benefit from AaaS in the production setting. The results confirm the feasibility of rCUDA and highlight that rCUDA achieves similar performance compared to CUDA, provides consistent results, and more importantly, allows for a single application to benefit from all the GPUs available in the cluster without loosing efficiency.Comment: 11th IEEE International Conference on eScience (IEEE eScience) - Munich, Germany, 201

    Resource Management Policies for Cloud-based Interactive 3D Applications

    Get PDF
    The increasing interest for the cloud computing paradigm is leading several different applications and services moving to the 'cloud'. Those range from general storage and computing services to document management systems and office applications. A new challenge is the migration to the cloud of interactive 3D applications, especially those designed for professional usage (e.g., scientific data visualizers, CAD instruments, 3D medical modeling applications). Among the several hurdles rising from some specific hardware and software requirements, an important issue to address is the definition of novel management policies that can properly support these applications, namely, that ensure efficient resource utilization together with a sufficient quality perceived by users. This paper presents some preliminary results in this direction and discusses some possible future work in this field. Our work is part of a wider project aiming at developing a complete architecture to offer interactive 3D applications in a cloud computing environment. Hence, we refer to this particular solution in this stud

    Doctor of Philosophy

    Get PDF
    dissertationAs the base of the software stack, system-level software is expected to provide ecient and scalable storage, communication, security and resource management functionalities. However, there are many computationally expensive functionalities at the system level, such as encryption, packet inspection, and error correction. All of these require substantial computing power. What's more, today's application workloads have entered gigabyte and terabyte scales, which demand even more computing power. To solve the rapidly increased computing power demand at the system level, this dissertation proposes using parallel graphics pro- cessing units (GPUs) in system software. GPUs excel at parallel computing, and also have a much faster development trend in parallel performance than central processing units (CPUs). However, system-level software has been originally designed to be latency-oriented. GPUs are designed for long-running computation and large-scale data processing, which are throughput-oriented. Such mismatch makes it dicult to t the system-level software with the GPUs. This dissertation presents generic principles of system-level GPU computing developed during the process of creating our two general frameworks for integrating GPU computing in storage and network packet processing. The principles are generic design techniques and abstractions to deal with common system-level GPU computing challenges. Those principles have been evaluated in concrete cases including storage and network packet processing applications that have been augmented with GPU computing. The signicant performance improvement found in the evaluation shows the eectiveness and eciency of the proposed techniques and abstractions. This dissertation also presents a literature survey of the relatively young system-level GPU computing area, to introduce the state of the art in both applications and techniques, and also their future potentials

    FairGV: Fair and Fast GPU Virtualization

    Get PDF
    Increasingly high-performance computing (HPC) application developers are opting to use cloud resources due to higher availability. Virtualized GPUs would be an obvious and attractive option for HPC application developers using cloud hosting services. Unfortunately, existing GPU virtualization software is not ready to address fairness, utilization, and performance limitations associated with consolidating mixed HPC workloads. This paper presents FairGV, a radically redesigned GPU virtualization system that achieves system-wide weighted fair sharing and strong performance isolation in mixed workloads that use GPUs with variable degrees of intensity. To achieve its objectives, FairGV introduces a trap-less GPU processing architecture, a new fair queuing method integrated with work-conserving and GPU-centric co-scheduling polices, and a collaborative scheduling method for non-preemptive GPUs. Our prototype implementation achieves near ideal fairness (? 0.97 Min-Max Ratio) with little performance degradation (? 1.02 aggregated overhead) in a range of mixed HPC workloads that leverage GPUs
    • …
    corecore