5,961 research outputs found

    Forecasting of commercial sales with large scale Gaussian Processes

    Full text link
    This paper argues that there has not been enough discussion in the field of applications of Gaussian Process for the fast moving consumer goods industry. Yet, this technique can be important as it e.g., can provide automatic feature relevance determination and the posterior mean can unlock insights on the data. Significant challenges are the large size and high dimensionality of commercial data at a point of sale. The study reviews approaches in the Gaussian Processes modeling for large data sets, evaluates their performance on commercial sales and shows value of this type of models as a decision-making tool for management.Comment: 1o pages, 5 figure

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users

    A Single Scalable LSTM Model for Short-Term Forecasting of Massive Electricity Time Series

    Get PDF
    This article belongs to the Special Issue Forecasting in Electricity Markets with Big Data and Artificial Intelligence.Most electricity systems worldwide are deploying advanced metering infrastructures to collect relevant operational data. In particular, smart meters allow tracking electricity load consumption at a very disaggregated level and at high frequency rates. This data opens the possibility of developing new forecasting models with a potential positive impact on electricity systems. We present a general methodology that can process and forecast many smart-meter time series. Instead of using traditional and univariate approaches, we develop a single but complex recurrent neural-network model with long short-term memory that can capture individual consumption patterns and consumptions from different households. The resulting model can accurately predict future loads (short-term) of individual consumers, even if these were not included in the original training set. This entails a great potential for large-scale applications as once the single network is trained, accurate individual forecast for new consumers can be obtained at almost no computational cost. The proposed model is tested under a large set of numerical experiments by using a real-world dataset with thousands of disaggregated electricity consumption time series. Furthermore, we explore how geo-demographic segmentation of consumers may impact the forecasting accuracy of the model.The authors gratefully acknowledge the financial support from the Spanish government through projects MTM2017-88979-P and PID2019-108311GB-I00/AEI/10.13039/501100011033, and from Fundación Iberdrola through “Ayudas a la Investigación en Energía y Medio Ambiente 2018”
    corecore