19 research outputs found

    Fuzzy-GRA trust model for cloud risk management

    Get PDF
    Cloud computing is not adequately secure due to the currently used traditional trust methods such as global trust model and local trust model. These are prone to security vulnerabilities. This paper introduces a trust model based on the fuzzy mathematics and gray relational theory. Fuzzy mathematics and gray relational analysis (Fuzzy-GRA) aims to improve the poor dynamic adaptability of cloud computing. Fuzzy-GRA platform is used to test and validate the behavior of the model. Furthermore, our proposed model is compared to other known models. Based on the experimental results, we prove that our model has the edge over other existing models

    Modeling Dynamic Trust and Risk Evaluation Based on High-Order Moments

    Get PDF

    Cheating-Resilient Incentive Scheme for Mobile Crowdsensing Systems

    Full text link
    Mobile Crowdsensing is a promising paradigm for ubiquitous sensing, which explores the tremendous data collected by mobile smart devices with prominent spatial-temporal coverage. As a fundamental property of Mobile Crowdsensing Systems, temporally recruited mobile users can provide agile, fine-grained, and economical sensing labors, however their self-interest cannot guarantee the quality of the sensing data, even when there is a fair return. Therefore, a mechanism is required for the system server to recruit well-behaving users for credible sensing, and to stimulate and reward more contributive users based on sensing truth discovery to further increase credible reporting. In this paper, we develop a novel Cheating-Resilient Incentive (CRI) scheme for Mobile Crowdsensing Systems, which achieves credibility-driven user recruitment and payback maximization for honest users with quality data. Via theoretical analysis, we demonstrate the correctness of our design. The performance of our scheme is evaluated based on extensive realworld trace-driven simulations. Our evaluation results show that our scheme is proven to be effective in terms of both guaranteeing sensing accuracy and resisting potential cheating behaviors, as demonstrated in practical scenarios, as well as those that are intentionally harsher

    Affirmed Crowd Sensor Selection based Cooperative Spectrum Sensing

    Get PDF
    The Cooperative Spectrum sensing model is gaining importance among the cognitive radio network sharing groups. While the crowd-sensing model (technically the cooperative spectrum sensing) model has positive developments, one of the critical challenges plaguing the model is the false or manipulated crowd sensor data, which results in implications for the secondary user’s network. Considering the efficacy of the spectrum sensing by crowd-sensing model, it is vital to address the issues of falsifications and manipulations, by focusing on the conditions of more accurate determination models. Concerning this, a method of avoiding falsified crowd sensors from the process of crowd sensors centric cooperative spectrum sensing has portrayed in this article. The proposal is a protocol that selects affirmed crowd sensor under diversified factors of the decision credibility about spectrum availability. An experimental study is a simulation approach that evincing the competency of the proposal compared to the other contemporary models available in recent literature

    Automatic trust calculation for service-oriented systems

    Get PDF
    Among various service providers providing identical or similar services with varying quality of service, trust is essential for service consumers to find the right one. Manually assigning feedback costs much time and suffers from several drawbacks. Only automatic trust calculation is feasible for large-scale service-oriented applications. Therefore an automatic method of trust calculation is proposed. To make the calculation accurate, the Kalman filter is adopted to filter out malicious non-trust quality criterion (NTQC) values instead of malicious trust values. To offer higher detection accuracy, it is further improved by considering the relationship between NTQC values and variances. Since dishonest or inaccurate values can still influence trust values, the similarity between consumers is used to weight data from other consumers. As existing models only used the Euclidean function and ignored others, a collection of distance functions is modified to calculate the similarity. Finally, experiments are carried out to access the robustness of the proposed model. The results show that the improved algorithm can offer higher detection accuracy, and it was discovered that another equation outperformed the Euclidean function

    Dynamic Trust-Based Device Legitimacy Assessment Towards Secure IoT Interactions

    Get PDF
    Establishing trust-based interactions in heterogeneously connected devices appears to be the prominent mechanism in addressing the prevailing concerns of confidence, reliability and privacy relevant in establishing secure interactions among connected devices in the network. Trust-based assessment of device legitimacy is evolving given IoT devices’ dynamic and heterogeneous nature and emerging adversaries. However, computation and application of trust level in establishing secure communications, access control and privacy domain are rarely discussed in the literature. To compute trust, based on the quality of service, direct interactions, and the relationship between devices, we introduce a multi-factor trust computation model that considers the multiple attributes of interactions in an IoT network of heterogeneous devices providing a wide range of data and services. Direct trust is estimated for quality of service considering the response time, reliability, consistency, and integrity attributes of devices. The time decay factor influences the credibility of computed trust over time. The policy-driven mechanism is employed to sift the devices and isolate the malicious ones. Extensive simulations validate the proposed model’s effectiveness using Contiki’s Cooja simulator for IoT networks

    Reputation Revision Method for Selecting Cloud Services Based on Prior Knowledge and a Market Mechanism

    Get PDF
    The trust levels of cloud services should be evaluated to ensure their reliability. The effectiveness of these evaluations has major effects on user satisfaction, which is increasingly important. However, it is difficult to provide objective evaluations in open and dynamic environments because of the possibilities of malicious evaluations, individual preferences, and intentional praise. In this study, we propose a novel unfair rating filtering method for a reputation revision system. This method uses prior knowledge as the basis of similarity when calculating the average rating, which facilitates the recognition and filtering of unfair ratings. In addition, the overall performance is increased by a market mechanism that allows users and service providers to adjust their choice of services and service configuration in a timely manner. The experimental results showed that this method filtered unfair ratings in an effective manner, which greatly improved the precision of the reputation revision system
    corecore