111 research outputs found

    Interaction mining mobile apps

    Get PDF
    Millions of mobile apps are used by billions of users every day. Although the design of these apps play an important role in their adoption, the design process still remains complex and time intensive. At the same time, existing apps embody multiple solutions to numerous design problems faced by app developers. How do we make this design knowledge embedded in existing apps accessible to designers? And how can it help simplify the app design process? This dissertation introduces interaction mining, a technique to capture the designs of mobile apps in a way that supports data-driven design applications. It presents systems that implement interaction mining for Android apps without requiring any access to their source code making it possible to design mine apps at an unprecedented scale. It presents Rico, the largest publicly available mobile app design repository to date. It discusses how such repositories created using interaction mining can be used to train models that enable applications such as keyword and example-based search interactions for mobile screens and user flows. It also presents zero-integration performance testing (ZIPT), a novel technique for testing app designs. It demonstrates how ZIPT can be used to help designers understand which examples to draw from in the early stages of the app design process and perform comparative testing at scale with low cost and effort in the later stages of the process

    Intelligence artificielle: Les défis actuels et l'action d'Inria - Livre blanc Inria

    Get PDF
    Livre blanc Inria N°01International audienceInria white papers look at major current challenges in informatics and mathematics and show actions conducted by our project-teams to address these challenges. This document is the first produced by the Strategic Technology Monitoring & Prospective Studies Unit. Thanks to a reactive observation system, this unit plays a lead role in supporting Inria to develop its strategic and scientific orientations. It also enables the institute to anticipate the impact of digital sciences on all social and economic domains. It has been coordinated by Bertrand Braunschweig with contributions from 45 researchers from Inria and from our partners. Special thanks to Peter Sturm for his precise and complete review.Les livres blancs d’Inria examinent les grands défis actuels du numérique et présentent les actions menées par noséquipes-projets pour résoudre ces défis. Ce document est le premier produit par la cellule veille et prospective d’Inria. Cette unité, par l’attention qu’elle porte aux évolutions scientifiques et technologiques, doit jouer un rôle majeur dans la détermination des orientations stratégiques et scientifiques d’Inria. Elle doit également permettre à l’Institut d’anticiper l’impact des sciences du numérique dans tous les domaines sociaux et économiques. Ce livre blanc a été coordonné par Bertrand Braunschweig avec des contributions de 45 chercheurs d’Inria et de ses partenaires. Un grand merci à Peter Sturm pour sa relecture précise et complète. Merci également au service STIP du centre de Saclay – Île-de-France pour la correction finale de la version française

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments

    Get PDF
    The last couple of years have seen a fascinating evolution. While the early Web predominantly focused on human consumption of Web content, the widespread dissemination of social software and Web 2.0 technologies enabled new forms of collaborative content creation and problem solving. These new forms often utilize the principles of collective intelligence, a phenomenon that emerges from a group of people who either cooperate or compete with each other to create a result that is better or more intelligent than any individual result (Leimeister, 2010; Malone, Laubacher, & Dellarocas, 2010). Crowdsourcing has recently gained attention as one of the mechanisms that taps into the power of web-enabled collective intelligence (Howe, 2008). Brabham (2013) defines it as “an online, distributed problem-solving and production model that leverages the collective intelligence of online communities to serve specific organizational goals” (p. xix). Well-known examples of crowdsourcing platforms are Wikipedia, Amazon Mechanical Turk, or InnoCentive. Since the emergence of the term crowdsourcing in 2006, one popular misconception is that crowdsourcing relies largely on an amateur crowd rather than a pool of professional skilled workers (Brabham, 2013). As this might be true for low cognitive tasks, such as tagging a picture or rating a product, it is often not true for complex problem-solving and creative tasks, such as developing a new computer algorithm or creating an impressive product design. This raises the question of how to efficiently allocate an enterprise crowdsourcing task to appropriate members of the crowd. The sheer number of crowdsourcing tasks available at crowdsourcing intermediaries makes it especially challenging for workers to identify a task that matches their skills, experiences, and knowledge (Schall, 2012, p. 2). An explanation why the identification of appropriate expert knowledge plays a major role in crowdsourcing is partly given in Condorcet’s jury theorem (Sunstein, 2008, p. 25). The theorem states that if the average participant in a binary decision process is more likely to be correct than incorrect, then as the number of participants increases, the higher the probability is that the aggregate arrives at the right answer. When assuming that a suitable participant for a task is more likely to give a correct answer or solution than an improper one, efficient task recommendation becomes crucial to improve the aggregated results in crowdsourcing processes. Although some assumptions of the theorem, such as independent votes, binary decisions, and homogenous groups, are often unrealistic in practice, it illustrates the importance of an optimized task allocation and group formation that consider the task requirements and workers’ characteristics. Ontologies are widely applied to support semantic search and recommendation mechanisms (Middleton, De Roure, & Shadbolt, 2009). However, little research has investigated the potentials and the design of an ontology for the domain of enterprise crowdsourcing. The author of this thesis argues in favor of enhancing the automation and interoperability of an enterprise crowdsourcing environment with the introduction of a semantic vocabulary in form of an expressive but easy-to-use ontology. The deployment of a semantic vocabulary for enterprise crowdsourcing is likely to provide several technical and economic benefits for an enterprise. These benefits were the main drivers in efforts made during the research project of this thesis: 1. Task allocation: With the utilization of the semantics, requesters are able to form smaller task-specific crowds that perform tasks at lower costs and in less time than larger crowds. A standardized and controlled vocabulary allows requesters to communicate specific details about a crowdsourcing activity within a web page along with other existing displayed information. This has advantages for both contributors and requesters. On the one hand, contributors can easily and precisely search for tasks that correspond to their interests, experiences, skills, knowledge, and availability. On the other hand, crowdsourcing systems and intermediaries can proactively recommend crowdsourcing tasks to potential contributors (e.g., based on their social network profiles). 2. Quality control: Capturing and storing crowdsourcing data increases the overall transparency of the entire crowdsourcing activity and thus allows for a more sophisticated quality control. Requesters are able to check the consistency and receive appropriate support to verify and validate crowdsourcing data according to defined data types and value ranges. Before involving potential workers in a crowdsourcing task, requesters can also judge their trustworthiness based on previous accomplished tasks and hence improve the recruitment process. 3. Task definition: A standardized set of semantic entities supports the configuration of a crowdsourcing task. Requesters can evaluate historical crowdsourcing data to get suggestions for equal or similar crowdsourcing tasks, for example, which incentive or evaluation mechanism to use. They may also decrease their time to configure a crowdsourcing task by reusing well-established task specifications of a particular type. 4. Data integration and exchange: Applying a semantic vocabulary as a standard format for describing enterprise crowdsourcing activities allows not only crowdsourcing systems inside but also crowdsourcing intermediaries outside the company to extract crowdsourcing data from other business applications, such as project management, enterprise resource planning, or social software, and use it for further processing without retyping and copying the data. Additionally, enterprise or web search engines may exploit the structured data and provide enhanced search, browsing, and navigation capabilities, for example, clustering similar crowdsourcing tasks according to the required qualifications or the offered incentives.:Summary: Hetmank, L. (2014). Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments (Summary). Article 1: Hetmank, L. (2013). Components and Functions of Crowdsourcing Systems – A Systematic Literature Review. In 11th International Conference on Wirtschaftsinformatik (WI). Leipzig. Article 2: Hetmank, L. (2014). A Synopsis of Enterprise Crowdsourcing Literature. In 22nd European Conference on Information Systems (ECIS). Tel Aviv. Article 3: Hetmank, L. (2013). Towards a Semantic Standard for Enterprise Crowdsourcing – A Scenario-based Evaluation of a Conceptual Prototype. In 21st European Conference on Information Systems (ECIS). Utrecht. Article 4: Hetmank, L. (2014). Developing an Ontology for Enterprise Crowdsourcing. In Multikonferenz Wirtschaftsinformatik (MKWI). Paderborn. Article 5: Hetmank, L. (2014). An Ontology for Enhancing Automation and Interoperability in Enterprise Crowdsourcing Environments (Technical Report). Retrieved from http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155187
    • …
    corecore