2,898 research outputs found

    A Tool for Aligning Event Logs and Prescriptive Process Models through Automated Planning

    Get PDF
    In Conformance Checking, alignment is the problem of detecting and repairing nonconformity between the actual execution of a business process, as recorded in an event log, and the model of the same process. Literature proposes solutions for the alignment problem that are implementations of planning algorithms built ad-hoc for the specific problem. Unfortunately, in the era of big data, these ad-hoc implementations do not scale sufficiently compared with well-established planning systems. In this paper, we tackle the above issue by presenting a tool, also available in ProM, to represent instances of the alignment problem as automated planning problems in PDDL (Planning Domain Definition Language) for which state-of-the-art planners can find a correct solution in a finite amount of time. If alignment problems are converted into planning problems, one can seamlessly update to the recent versions of the best performing automated planners, with advantages in term of versatility and customization. Furthermore, by employing several processes and event logs of different sizes, we show how our tool outperforms existing approaches of several order of magnitude and, in certain cases, carries out the task while existing approaches run out of memory

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle

    The Internet-of-Things Meets Business Process Management: Mutual Benefits and Challenges

    Get PDF
    The Internet of Things (IoT) refers to a network of connected devices collecting and exchanging data over the Internet. These things can be artificial or natural, and interact as autonomous agents forming a complex system. In turn, Business Process Management (BPM) was established to analyze, discover, design, implement, execute, monitor and evolve collaborative business processes within and across organizations. While the IoT and BPM have been regarded as separate topics in research and practice, we strongly believe that the management of IoT applications will strongly benefit from BPM concepts, methods and technologies on the one hand; on the other one, the IoT poses challenges that will require enhancements and extensions of the current state-of-the-art in the BPM field. In this paper, we question to what extent these two paradigms can be combined and we discuss the emerging challenges

    A recursive paradigm for aligning observed behavior of large structured process models

    Get PDF
    The alignment of observed and modeled behavior is a crucial problem in process mining, since it opens the door for conformance checking and enhancement of process models. The state of the art techniques for the computation of alignments rely on a full exploration of the combination of the model state space and the observed behavior (an event log), which hampers their applicability for large instances. This paper presents a fresh view to the alignment problem: the computation of alignments is casted as the resolution of Integer Linear Programming models, where the user can decide the granularity of the alignment steps. Moreover, a novel recursive strategy is used to split the problem into small pieces, exponentially reducing the complexity of the ILP models to be solved. The contributions of this paper represent a promising alternative to fight the inherent complexity of computing alignments for large instances.Peer ReviewedPostprint (author's final draft

    Conformance checking of a longwall shearer operation based on low-level events

    Get PDF
    Conformance checking is a process mining technique that compares a process model with an event log of the same process to check whether the current execution stored in the log conforms to the model and vice versa. This paper deals with the conformance checking of a longwall shearer process. The approach uses place-transition Petri nets with inhibitor arcs for modeling purposes. We use event log files collected from a few coal mines located in Poland by Famur S.A., one of the global suppliers of coal mining machines. One of the main advantages of the approach is the possibility for both offline and online analysis of the log data. The paper presents a detailed description of the longwall process, an original formal model we developed, selected elements of the approach’s implementation and the results of experiments
    • …
    corecore