108 research outputs found

    Optimizing computation-communication overlap in asynchronous task-based programs

    Get PDF
    Asynchronous task-based programming models are gaining popularity to address the programmability and performance challenges in high performance computing. One of the main attractions of these models and runtimes is their potential to automatically expose and exploit overlap of computation with communication. However, we find that inefficient interactions between these programming models and the underlying messaging layer (in most cases, MPI) limit the achievable computation-communication overlap and negatively impact the performance of parallel programs. We address this challenge by exposing and exploiting information about MPI internals in a task-based runtime system to make better task-creation and scheduling decisions. In particular, we present two mechanisms for exchanging information between MPI and a task-based runtime, and analyze their trade-offs. Further, we present a detailed evaluation of the proposed mechanisms implemented in MPI and a task-based runtime. We show performance improvements of up to 16.3% and 34.5% for proxy applications with point-to-point and collective communication, respectively.Peer ReviewedPostprint (author's final draft

    GRAPE-S: Near Real-Time Coalition Formation for Multiple Service Collectives

    Full text link
    Robotic collectives for military and disaster response applications require coalition formation algorithms to partition robots into appropriate task teams. Collectives' missions will often incorporate tasks that require multiple high-level robot behaviors or services, which coalition formation must accommodate. The highly dynamic and unstructured application domains also necessitate that coalition formation algorithms produce near optimal solutions (i.e., >95% utility) in near real-time (i.e., <5 minutes) with very large collectives (i.e., hundreds of robots). No previous coalition formation algorithm satisfies these requirements. An initial evaluation found that traditional auction-based algorithms' runtimes are too long, even though the centralized simulator incorporated ideal conditions unlikely to occur in real-world deployments (i.e., synchronization across robots and perfect, instantaneous communication). The hedonic game-based GRAPE algorithm can produce solutions in near real-time, but cannot be applied to multiple service collectives. This manuscript integrates GRAPE and a services model, producing GRAPE-S and Pair-GRAPE-S. These algorithms and two auction baselines were evaluated using a centralized simulator with up to 1000 robots, and via the largest distributed coalition formation simulated evaluation to date, with up to 500 robots. The evaluations demonstrate that auctions transfer poorly to distributed collectives, resulting in excessive runtimes and low utility solutions. GRAPE-S satisfies the target domains' coalition formation requirements, producing near optimal solutions in near real-time, and Pair-GRAPE-S more than satisfies the domain requirements, producing optimal solutions in near real-time. GRAPE-S and Pair-GRAPE-S are the first algorithms demonstrated to support near real-time coalition formation for very large, distributed collectives with multiple services

    Scheduling Heterogeneous HPC Applications in Next-Generation Exascale Systems

    Get PDF
    Next generation HPC applications will increasingly time-share system resources with emerging workloads such as in-situ analytics, resilience tasks, runtime adaptation services and power management activities. HPC systems must carefully schedule these co-located codes in order to reduce their impact on application performance. Among the techniques traditionally used to mitigate the performance effects of time- share systems is gang scheduling. This approach, however, leverages global synchronization and time agreement mechanisms that will become hard to support as systems increase in size. Alternative performance interference mitigation approaches must be explored for future HPC systems. This dissertation evaluates the impacts of workload concurrency in future HPC systems. It uses simulation and modeling techniques to study the performance impacts of existing and emerging interference sources on a selection of HPC benchmarks, mini-applications, and applications. It also quantifies the cost and benefits of different approaches to scheduling co-located workloads, studies performance interference mitigation solutions based on gang scheduling, and examines their synchronization requirements. To do so, this dissertation presents and leverages a new Extreme Value Theory- based model to characterize interference sources, and investigate their impact on Bulk Synchronous Parallel (BSP) applications. It demonstrates how this model can be used to analyze the interference attenuation effects of alternative fine-grained OS scheduling approaches based on periodic real time schedulers. This analysis can, in turn, guide the design of those mitigation techniques by providing tools to understand the tradeoffs of selecting scheduling parameters

    Exascale machines require new programming paradigms and runtimes

    Get PDF
    Extreme scale parallel computing systems will have tens of thousands of optionally accelerator-equiped nodes with hundreds of cores each, as well as deep memory hierarchies and complex interconnect topologies. Such Exascale systems will provide hardware parallelism at multiple levels and will be energy constrained. Their extreme scale and the rapidly deteriorating reliablity of their hardware components means that Exascale systems will exhibit low mean-time-between-failure values. Furthermore, existing programming models already require heroic programming and optimisation efforts to achieve high efficiency on current supercomputers. Invariably, these efforts are platform-specific and non-portable. In this paper we will explore the shortcomings of existing programming models and runtime systems for large scale computing systems. We then propose and discuss important features of programming paradigms and runtime system to deal with large scale computing systems with a special focus on data-intensive applications and resilience. Finally, we also discuss code sustainability issues and propose several software metrics that are of paramount importance for code development for large scale computing systems

    Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations

    Full text link
    Load imbalance pervasively exists in distributed deep learning training systems, either caused by the inherent imbalance in learned tasks or by the system itself. Traditional synchronous Stochastic Gradient Descent (SGD) achieves good accuracy for a wide variety of tasks, but relies on global synchronization to accumulate the gradients at every training step. In this paper, we propose eager-SGD, which relaxes the global synchronization for decentralized accumulation. To implement eager-SGD, we propose to use two partial collectives: solo and majority. With solo allreduce, the faster processes contribute their gradients eagerly without waiting for the slower processes, whereas with majority allreduce, at least half of the participants must contribute gradients before continuing, all without using a central parameter server. We theoretically prove the convergence of the algorithms and describe the partial collectives in detail. Experimental results on load-imbalanced environments (CIFAR-10, ImageNet, and UCF101 datasets) show that eager-SGD achieves 1.27x speedup over the state-of-the-art synchronous SGD, without losing accuracy.Comment: Published in Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'20), pp. 45-61. 202

    Partial aggregation for collective communication in distributed memory machines

    Get PDF
    High Performance Computing (HPC) systems interconnect a large number of Processing Elements (PEs) in high-bandwidth networks to simulate complex scientific problems. The increasing scale of HPC systems poses great challenges on algorithm designers. As the average distance between PEs increases, data movement across hierarchical memory subsystems introduces high latency. Minimizing latency is particularly challenging in collective communications, where many PEs may interact in complex communication patterns. Although collective communications can be optimized for network-level parallelism, occasional synchronization delays due to dependencies in the communication pattern degrade application performance. To reduce the performance impact of communication and synchronization costs, parallel algorithms are designed with sophisticated latency hiding techniques. The principle is to interleave computation with asynchronous communication, which increases the overall occupancy of compute cores. However, collective communication primitives abstract parallelism which limits the integration of latency hiding techniques. Approaches to work around these limitations either modify the algorithmic structure of application codes, or replace collective primitives with verbose low-level communication calls. While these approaches give fine-grained control for latency hiding, implementing collective communication algorithms is challenging and requires expertise knowledge about HPC network topologies. A collective communication pattern is commonly described as a Directed Acyclic Graph (DAG) where a set of PEs, represented as vertices, resolve data dependencies through communication along the edges. Our approach improves latency hiding in collective communication through partial aggregation. Based on mathematical rules of binary operations and homomorphism, we expose data parallelism in a respective DAG to overlap computation with communication. The proposed concepts are implemented and evaluated with a subset of collective primitives in the Message Passing Interface (MPI), an established communication standard in scientific computing. An experimental analysis with communication-bound microbenchmarks shows considerable performance benefits for the evaluated collective primitives. A detailed case study with a large-scale distributed sort algorithm demonstrates, how partial aggregation significantly improves performance in data-intensive scenarios. Besides better latency hiding capabilities with collective communication primitives, our approach enables further optimizations of their implementations within MPI libraries. The vast amount of asynchronous programming models, which are actively studied in the HPC community, benefit from partial aggregation in collective communication patterns. Future work can utilize partial aggregation to improve the interaction of MPI collectives with acclerator architectures, and to design more efficient communication algorithms
    • …
    corecore