814 research outputs found

    Methods for Ordinal Peer Grading

    Full text link
    MOOCs have the potential to revolutionize higher education with their wide outreach and accessibility, but they require instructors to come up with scalable alternates to traditional student evaluation. Peer grading -- having students assess each other -- is a promising approach to tackling the problem of evaluation at scale, since the number of "graders" naturally scales with the number of students. However, students are not trained in grading, which means that one cannot expect the same level of grading skills as in traditional settings. Drawing on broad evidence that ordinal feedback is easier to provide and more reliable than cardinal feedback, it is therefore desirable to allow peer graders to make ordinal statements (e.g. "project X is better than project Y") and not require them to make cardinal statements (e.g. "project X is a B-"). Thus, in this paper we study the problem of automatically inferring student grades from ordinal peer feedback, as opposed to existing methods that require cardinal peer feedback. We formulate the ordinal peer grading problem as a type of rank aggregation problem, and explore several probabilistic models under which to estimate student grades and grader reliability. We study the applicability of these methods using peer grading data collected from a real class -- with instructor and TA grades as a baseline -- and demonstrate the efficacy of ordinal feedback techniques in comparison to existing cardinal peer grading methods. Finally, we compare these peer-grading techniques to traditional evaluation techniques.Comment: Submitted to KDD 201

    Learning Inconsistent Preferences with Kernel Methods

    Full text link
    We propose a probabilistic kernel approach for preferential learning from pairwise duelling data using Gaussian Processes. Different from previous methods, we do not impose a total order on the item space, hence can capture more expressive latent preferential structures such as inconsistent preferences and clusters of comparable items. Furthermore, we prove the universality of the proposed kernels, i.e. that the corresponding reproducing kernel Hilbert Space (RKHS) is dense in the space of skew-symmetric preference functions. To conclude the paper, we provide an extensive set of numerical experiments on simulated and real-world datasets showcasing the competitiveness of our proposed method with state-of-the-art

    Spam elimination and bias correction : ensuring label quality in crowdsourced tasks.

    Get PDF
    Crowdsourcing is proposed as a powerful mechanism for accomplishing large scale tasks via anonymous workers online. It has been demonstrated as an effective and important approach for collecting labeled data in application domains which require human intelligence, such as image labeling, video annotation, natural language processing, etc. Despite the promises, one big challenge still exists in crowdsourcing systems: the difficulty of controlling the quality of crowds. The workers usually have diverse education levels, personal preferences, and motivations, leading to unknown work performance while completing a crowdsourced task. Among them, some are reliable, and some might provide noisy feedback. It is intrinsic to apply worker filtering approach to crowdsourcing applications, which recognizes and tackles noisy workers, in order to obtain high-quality labels. The presented work in this dissertation provides discussions in this area of research, and proposes efficient probabilistic based worker filtering models to distinguish varied types of poor quality workers. Most of the existing work in literature in the field of worker filtering either only concentrates on binary labeling tasks, or fails to separate the low quality workers whose label errors can be corrected from the other spam workers (with label errors which cannot be corrected). As such, we first propose a Spam Removing and De-biasing Framework (SRDF), to deal with the worker filtering procedure in labeling tasks with numerical label scales. The developed framework can detect spam workers and biased workers separately. The biased workers are defined as those who show tendencies of providing higher (or lower) labels than truths, and their errors are able to be corrected. To tackle the biasing problem, an iterative bias detection approach is introduced to recognize the biased workers. The spam filtering algorithm proposes to eliminate three types of spam workers, including random spammers who provide random labels, uniform spammers who give same labels for most of the items, and sloppy workers who offer low accuracy labels. Integrating the spam filtering and bias detection approaches into aggregating algorithms, which infer truths from labels obtained from crowds, can lead to high quality consensus results. The common characteristic of random spammers and uniform spammers is that they provide useless feedback without making efforts for a labeling task. Thus, it is not necessary to distinguish them separately. In addition, the removal of sloppy workers has great impact on the detection of biased workers, with the SRDF framework. To combat these problems, a different way of worker classification is presented in this dissertation. In particular, the biased workers are classified as a subcategory of sloppy workers. Finally, an ITerative Self Correcting - Truth Discovery (ITSC-TD) framework is then proposed, which can reliably recognize biased workers in ordinal labeling tasks, based on a probabilistic based bias detection model. ITSC-TD estimates true labels through applying an optimization based truth discovery method, which minimizes overall label errors by assigning different weights to workers. The typical tasks posted on popular crowdsourcing platforms, such as MTurk, are simple tasks, which are low in complexity, independent, and require little time to complete. Complex tasks, however, in many cases require the crowd workers to possess specialized skills in task domains. As a result, this type of task is more inclined to have the problem of poor quality of feedback from crowds, compared to simple tasks. As such, we propose a multiple views approach, for the purpose of obtaining high quality consensus labels in complex labeling tasks. In this approach, each view is defined as a labeling critique or rubric, which aims to guide the workers to become aware of the desirable work characteristics or goals. Combining the view labels results in the overall estimated labels for each item. The multiple views approach is developed under the hypothesis that workers\u27 performance might differ from one view to another. Varied weights are then assigned to different views for each worker. Additionally, the ITSC-TD framework is integrated into the multiple views model to achieve high quality estimated truths for each view. Next, we propose a Semi-supervised Worker Filtering (SWF) model to eliminate spam workers, who assign random labels for each item. The SWF approach conducts worker filtering with a limited set of gold truths available as priori. Each worker is associated with a spammer score, which is estimated via the developed semi-supervised model, and low quality workers are efficiently detected by comparing the spammer score with a predefined threshold value. The efficiency of all the developed frameworks and models are demonstrated on simulated and real-world data sets. By comparing the proposed frameworks to a set of state-of-art methodologies, such as expectation maximization based aggregating algorithm, GLAD and optimization based truth discovery approach, in the domain of crowdsourcing, up to 28.0% improvement can be obtained for the accuracy of true label estimation

    Crowd-sourced Text Analysis: Reproducible and Agile Production of Political Data

    Get PDF
    Empirical social science often relies on data that are not observed in the field, but are transformed into quantitative variables by expert researchers who analyze and interpret qualitative raw sources. While generally considered the most valid way to produce data, this expert-driven process is inherently difficult to replicate or to assess on grounds of reliability. Using crowd-sourcing to distribute text for reading and interpretation by massive numbers of nonexperts, we generate results comparable to those using experts to read and interpret the same texts, but do so far more quickly and flexibly. Crucially, the data we collect can be reproduced and extended transparently, making crowd-sourced datasets intrinsically reproducible. This focuses researchers’ attention on the fundamental scientific objective of specifying reliable and replicable methods for collecting the data needed, rather than on the content of any particular dataset. We also show that our approach works straightforwardly with different types of political text, written in different languages. While findings reported here concern text analysis, they have far-reaching implications for expert-generated data in the social sciences

    Dynamic Bayesian Combination of Multiple Imperfect Classifiers

    Get PDF
    Classifier combination methods need to make best use of the outputs of multiple, imperfect classifiers to enable higher accuracy classifications. In many situations, such as when human decisions need to be combined, the base decisions can vary enormously in reliability. A Bayesian approach to such uncertain combination allows us to infer the differences in performance between individuals and to incorporate any available prior knowledge about their abilities when training data is sparse. In this paper we explore Bayesian classifier combination, using the computationally efficient framework of variational Bayesian inference. We apply the approach to real data from a large citizen science project, Galaxy Zoo Supernovae, and show that our method far outperforms other established approaches to imperfect decision combination. We go on to analyse the putative community structure of the decision makers, based on their inferred decision making strategies, and show that natural groupings are formed. Finally we present a dynamic Bayesian classifier combination approach and investigate the changes in base classifier performance over time.Comment: 35 pages, 12 figure

    NetProphet 2.0: Mapping transcription factor networks by exploiting scalable data resources

    Get PDF
    MOTIVATION: Cells process information, in part, through transcription factor (TF) networks, which control the rates at which individual genes produce their products. A TF network map is a graph that indicates which TFs bind and directly regulate each gene. Previous work has described network mapping algorithms that rely exclusively on gene expression data and \u27integrative\u27 algorithms that exploit a wide range of data sources including chromatin immunoprecipitation sequencing (ChIP-seq) of many TFs, genome-wide chromatin marks, and binding specificities for many TFs determined in vitro. However, such resources are available only for a few major model systems and cannot be easily replicated for new organisms or cell types. RESULTS: We present NetProphet 2.0, a \u27data light\u27 algorithm for TF network mapping, and show that it is more accurate at identifying direct targets of TFs than other, similarly data light algorithms. In particular, it improves on the accuracy of NetProphet 1.0, which used only gene expression data, by exploiting three principles. First, combining multiple approaches to network mapping from expression data can improve accuracy relative to the constituent approaches. Second, TFs with similar DNA binding domains bind similar sets of target genes. Third, even a noisy, preliminary network map can be used to infer DNA binding specificities from promoter sequences and these inferred specificities can be used to further improve the accuracy of the network map. AVAILABILITY AND IMPLEMENTATION: Source code and comprehensive documentation are freely available at https://github.com/yiming-kang/NetProphet_2.0. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online
    • …
    corecore