157 research outputs found

    Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers

    Get PDF
    We present a scalable approach to performing approximate fully Bayesian inference in generic state space models. The proposed method is an alternative to particle MCMC that provides fully Bayesian inference of both the dynamic latent states and the static parameters of the model. We build up on recent advances in computational statistics that combine variational methods with sequential Monte Carlo sampling and we demonstrate the advantages of performing full Bayesian inference over the static parameters rather than just performing variational EM approximations. We illustrate how our approach enables scalable inference in multivariate stochastic volatility models and self-exciting point process models that allow for flexible dynamics in the latent intensity function.Comment: To appear in AISTATS 201

    Approximate inference methods in probabilistic machine learning and Bayesian statistics

    Get PDF
    This thesis develops new methods for efficient approximate inference in probabilistic models. Such models are routinely used in different fields, yet they remain computationally challenging as they involve high-dimensional integrals. We propose different approximate inference approaches addressing some challenges in probabilistic machine learning and Bayesian statistics. First, we present a Bayesian framework for genome-wide inference of DNA methylation levels and devise an efficient particle filtering and smoothing algorithm that can be used to identify differentially methylated regions between case and control groups. Second, we present a scalable inference approach for state space models by combining variational methods with sequential Monte Carlo sampling. The method is applied to self-exciting point process models that allow for flexible dynamics in the latent intensity function. Third, a new variational density motivated by copulas is developed. This new variational family can be beneficial compared with Gaussian approximations, as illustrated on examples with Bayesian neural networks. Lastly, we make some progress in a gradient-based adaptation of Hamiltonian Monte Carlo samplers by maximizing an approximation of the proposal entropy

    On Feynman--Kac training of partial Bayesian neural networks

    Full text link
    Recently, partial Bayesian neural networks (pBNNs), which only consider a subset of the parameters to be stochastic, were shown to perform competitively with full Bayesian neural networks. However, pBNNs are often multi-modal in the latent-variable space and thus challenging to approximate with parametric models. To address this problem, we propose an efficient sampling-based training strategy, wherein the training of a pBNN is formulated as simulating a Feynman--Kac model. We then describe variations of sequential Monte Carlo samplers that allow us to simultaneously estimate the parameters and the latent posterior distribution of this model at a tractable computational cost. We show on various synthetic and real-world datasets that our proposed training scheme outperforms the state of the art in terms of predictive performance.Comment: Under revie

    Hierarchical Implicit Models and Likelihood-Free Variational Inference

    Full text link
    Implicit probabilistic models are a flexible class of models defined by a simulation process for data. They form the basis for theories which encompass our understanding of the physical world. Despite this fundamental nature, the use of implicit models remains limited due to challenges in specifying complex latent structure in them, and in performing inferences in such models with large data sets. In this paper, we first introduce hierarchical implicit models (HIMs). HIMs combine the idea of implicit densities with hierarchical Bayesian modeling, thereby defining models via simulators of data with rich hidden structure. Next, we develop likelihood-free variational inference (LFVI), a scalable variational inference algorithm for HIMs. Key to LFVI is specifying a variational family that is also implicit. This matches the model's flexibility and allows for accurate approximation of the posterior. We demonstrate diverse applications: a large-scale physical simulator for predator-prey populations in ecology; a Bayesian generative adversarial network for discrete data; and a deep implicit model for text generation.Comment: Appears in Neural Information Processing Systems, 201

    Sequential Gaussian Processes for Online Learning of Nonstationary Functions

    Full text link
    Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: i) Conventional GP inference scales O(N3)O(N^{3}) with respect to the number of observations; ii) updating a GP model sequentially is not trivial; and iii) covariance kernels often enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose an online sequential Monte Carlo algorithm to fit mixtures of GPs that capture non-stationary behavior while allowing for fast, distributed inference. By formulating hyperparameter optimization as a multi-armed bandit problem, we accelerate mixing for real time inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the context of prediction for simulated non-stationary data and hospital time series data

    Bayesian Conditional Density Filtering

    Full text link
    We propose a Conditional Density Filtering (C-DF) algorithm for efficient online Bayesian inference. C-DF adapts MCMC sampling to the online setting, sampling from approximations to conditional posterior distributions obtained by propagating surrogate conditional sufficient statistics (a function of data and parameter estimates) as new data arrive. These quantities eliminate the need to store or process the entire dataset simultaneously and offer a number of desirable features. Often, these include a reduction in memory requirements and runtime and improved mixing, along with state-of-the-art parameter inference and prediction. These improvements are demonstrated through several illustrative examples including an application to high dimensional compressed regression. Finally, we show that C-DF samples converge to the target posterior distribution asymptotically as sampling proceeds and more data arrives.Comment: 41 pages, 7 figures, 12 table
    corecore