239 research outputs found

    Scalable Learning of Bayesian Networks Using Feedback Arc Set-Based Heuristics

    Get PDF
    Bayesianske nettverk er en viktig klasse av probabilistiske grafiske modeller. De består av en struktur (en rettet asyklisk graf) som beskriver betingede uavhengighet mellom stokastiske variabler og deres parametere (lokale sannsynlighetsfordelinger). Med andre ord er Bayesianske nettverk generative modeller som beskriver simultanfordelingene på en kompakt form. Den største utfordringen med å lære et Bayesiansk nettverk skyldes selve strukturen, og på grunn av den kombinatoriske karakteren til asyklisitetsegenskapen er det ingen overraskelse at strukturlæringsproblemet generelt er NP-hardt. Det eksisterer algoritmer som løser dette problemet eksakt: dynamisk programmering og heltalls lineær programmering er de viktigste kandidatene når man ønsker å finne strukturen til små til mellomstore Bayesianske nettverk fra data. På den annen side er heuristikk som bakkeklatringsvarianter ofte brukt når man forsøker å lære strukturen til større nettverk med tusenvis av variabler, selv om disse heuristikkene vanligvis ikke har teoretiske garantier og ytelsen i praksis kan bli uforutsigbar når man arbeider med storskala læring. Denne oppgaven tar for seg utvikling av skalerbare metoder som takler det strukturlæringsproblemet av Bayesianske nettverk, samtidig som det forsøkes å opprettholde et nivå av teoretisk kontroll. Dette ble oppnådd ved bruk av relaterte kombinatoriske problemer, nemlig det maksimale asykliske subgrafproblemet (maximum acyclic subgraph) og det duale problemet (feedback arc set). Selv om disse problemene er NP-harde i seg selv, er de betydelig mer håndterbare i praksis. Denne oppgaven utforsker måter å kartlegge Bayesiansk nettverksstrukturlæring til maksimale asykliske subgrafforekomster og trekke ut omtrentlige løsninger for det første problemet, basert på løsninger oppnådd for det andre. Vår forskning tyder på at selv om økt skalerbarhet kan oppnås på denne måten, er det adskillig mer utfordrende å opprettholde den teoretisk forståelsen med denne tilnærmingen. Videre fant vi ut at å lære strukturen til Bayesianske nettverk basert på maksimal asyklisk subgraf kanskje ikke er den beste metoden generelt, men vi identifiserte en kontekst - lineære strukturelle ligningsmodeller - der vi eksperimentelt kunne validere fordelene med denne tilnærmingen, som fører til rask og skalerbar identifisering av strukturen og med mulighet til å lære komplekse strukturer på en måte som er konkurransedyktig med moderne metoder.Bayesian networks form an important class of probabilistic graphical models. They consist of a structure (a directed acyclic graph) expressing conditional independencies among random variables, as well as parameters (local probability distributions). As such, Bayesian networks are generative models encoding joint probability distributions in a compact form. The main difficulty in learning a Bayesian network comes from the structure itself, owing to the combinatorial nature of the acyclicity property; it is well known and does not come as a surprise that the structure learning problem is NP-hard in general. Exact algorithms solving this problem exist: dynamic programming and integer linear programming are prime contenders when one seeks to recover the structure of small-to-medium sized Bayesian networks from data. On the other hand, heuristics such as hill climbing variants are commonly used when attempting to approximately learn the structure of larger networks with thousands of variables, although these heuristics typically lack theoretical guarantees and their performance in practice may become unreliable when dealing with large scale learning. This thesis is concerned with the development of scalable methods tackling the Bayesian network structure learning problem, while attempting to maintain a level of theoretical control. This was achieved via the use of related combinatorial problems, namely the maximum acyclic subgraph problem and its dual problem the minimum feedback arc set problem. Although these problems are NP-hard themselves, they exhibit significantly better tractability in practice. This thesis explores ways to map Bayesian network structure learning into maximum acyclic subgraph instances and extract approximate solutions for the first problem, based on the solutions obtained for the second. Our research suggests that although increased scalability can be achieved this way, maintaining theoretical understanding based on this approach is much more challenging. Furthermore, we found that learning the structure of Bayesian networks based on maximum acyclic subgraph/minimum feedback arc set may not be the go-to method in general, but we identified a setting - linear structural equation models - in which we could experimentally validate the benefits of this approach, leading to fast and scalable structure recovery with the ability to learn complex structures in a competitive way compared to state-of-the-art baselines.Doktorgradsavhandlin

    Optimal Complexity and Certification of Bregman First-Order Methods

    Full text link
    We provide a lower bound showing that the O(1/k)O(1/k) convergence rate of the NoLips method (a.k.a. Bregman Gradient) is optimal for the class of functions satisfying the hh-smoothness assumption. This assumption, also known as relative smoothness, appeared in the recent developments around the Bregman Gradient method, where acceleration remained an open issue. On the way, we show how to constructively obtain the corresponding worst-case functions by extending the computer-assisted performance estimation framework of Drori and Teboulle (Mathematical Programming, 2014) to Bregman first-order methods, and to handle the classes of differentiable and strictly convex functions.Comment: To appear in Mathematical Programmin

    Network Flow Optimization Using Reinforcement Learning

    Get PDF

    Multi-agent network games with applications in smart electric mobility

    Get PDF
    The growing complexity and globalization of modern society brought to light novel problems and challenges for researchers that aim to model real-life phenomena. Nowadays communities and even single individuals cannot be considered as a closed system, since one's actions create a ripple effect that ends up influencing the action of others. Therefore, the study of decision-making processes over networks became a pivotal topic in the research community. The possible applications are virtually endless and span into many different fields. Two of the most relevant examples are smart mobility and energy management in highly populated cities, where a collection of (partially) noncooperative individuals interact over a network trying to reach an efficient equilibrium point, in the sense of Nash, and share limited resources due to the environment in which they operate. In this work, we approach these problems through the lens of game theory. We use different declinations of this powerful mathematical tool to study several aspects of these themes. We design decentralized iterative algorithms solving generalized network games that generate behavioral rules for the players that, if followed, ensure global convergence. Then, we question the classical assumption of perfect players’ rationality by introducing novel dynamics to model partial rationality and analyzing their properties. We conclude by focusing on the design of optimal policies to regulate smart mobility and energy management. In this case, we create a detailed and more realistic description of the problem and use a nudging mechanism, implemented by means of a semi-decentralized algorithm, to align the users' behavior with the one desired by the policymaker

    Discovery of low-dimensional structure in high-dimensional inference problems

    Full text link
    Many learning and inference problems involve high-dimensional data such as images, video or genomic data, which cannot be processed efficiently using conventional methods due to their dimensionality. However, high-dimensional data often exhibit an inherent low-dimensional structure, for instance they can often be represented sparsely in some basis or domain. The discovery of an underlying low-dimensional structure is important to develop more robust and efficient analysis and processing algorithms. The first part of the dissertation investigates the statistical complexity of sparse recovery problems, including sparse linear and nonlinear regression models, feature selection and graph estimation. We present a framework that unifies sparse recovery problems and construct an analogy to channel coding in classical information theory. We perform an information-theoretic analysis to derive bounds on the number of samples required to reliably recover sparsity patterns independent of any specific recovery algorithm. In particular, we show that sample complexity can be tightly characterized using a mutual information formula similar to channel coding results. Next, we derive major extensions to this framework, including dependent input variables and a lower bound for sequential adaptive recovery schemes, which helps determine whether adaptivity provides performance gains. We compute statistical complexity bounds for various sparse recovery problems, showing our analysis improves upon the existing bounds and leads to intuitive results for new applications. In the second part, we investigate methods for improving the computational complexity of subgraph detection in graph-structured data, where we aim to discover anomalous patterns present in a connected subgraph of a given graph. This problem arises in many applications such as detection of network intrusions, community detection, detection of anomalous events in surveillance videos or disease outbreaks. Since optimization over connected subgraphs is a combinatorial and computationally difficult problem, we propose a convex relaxation that offers a principled approach to incorporating connectivity and conductance constraints on candidate subgraphs. We develop a novel nearly-linear time algorithm to solve the relaxed problem, establish convergence and consistency guarantees and demonstrate its feasibility and performance with experiments on real networks

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more
    corecore