11,190 research outputs found

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    A big-data analytics method for capturing visitor activities and flows: the case of an island country

    Get PDF
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Understanding how people move from one location to another is important both for smart city planners and destination managers. Big-data generated on social media sites have created opportunities for developing evidence-based insights that can be useful for decision-makers. While previous studies have introduced observational data analysis methods for social media data, there remains a need for method development—specifically for capturing people’s movement flows and behavioural details. This paper reports a study outlining a new analytical method, to explore people’s activities, behavioural, and movement details for people monitoring and planning purposes. Our method utilises online geotagged content uploaded by users from various locations. The effectiveness of the proposed method, which combines content capturing, processing and predicting algorithms, is demonstrated through a case study of the Fiji Islands. The results show good performance compared to other relevant methods and show applicability to national decisions and policies

    Intelligent services for big data science

    Get PDF
    Cities are areas where Big Data is having a real impact. Town planners and administration bodies just need the right tools at their fingertips to consume all the data points that a town or city generates and then be able to turn that into actions that improve peoples' lives. In this case, Big Data is definitely a phenomenon that has a direct impact on the quality of life for those of us that choose to live in a town or city. Smart Cities of tomorrow will rely not only on sensors within the city infrastructure, but also on a large number of devices that will willingly sense and integrate their data into technological platforms used for introspection into the habits and situations of individuals and city-large communities. Predictions say that cities will generate over 4.1 terabytes per day per square kilometer of urbanized land area by 2016. Handling efficiently such amounts of data is already a challenge. In this paper we present our solutions designed to support next-generation Big Data applications. We first present CAPIM, a platform designed to automate the process of collecting and aggregating context information on a large scale. It integrates services designed to collect context data (location, user's profile and characteristics, as well as the environment). Later on, we present a concrete implementation of an Intelligent Transportation System designed on top of CAPIM. The application is designed to assist users and city officials better understand traffic problems in large cities. Finally, we present a solution to handle efficient storage of context data on a large scale. The combination of these services provides support for intelligent Smart City applications, for actively and autonomously adaptation and smart provision of services and content, using the advantages of contextual information.Peer ReviewedPostprint (author's final draft

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
    • …
    corecore