5,863 research outputs found

    Control of multi-terminal HVDC networks towards wind power integration: A review

    Get PDF
    © 2015 Elsevier Ltd. More interconnections among countries and synchronous areas are foreseen in order to fulfil the EU 2050 target on the renewable generation share. One proposal to accomplish this challenging objective is the development of the so-called European SuperGrid. Multi-terminal HVDC networks are emerging as the most promising technologies to develop such a concept. Moreover, multi-terminal HVDC grids are based on highly controllable devices, which may allow not only transmitting power, but also supporting the AC grids to ensure a secure and stable operation. This paper aims to present an overview of different control schemes for multi-terminal HVDC grids, including the control of the power converters and the controls for power sharing and the provision of ancillary services. This paper also analyses the proposed modifications of the existing control schemes to manage high participation shares of wind power generation in multi-terminal grids.Postprint (author's final draft

    Adaptive Multicast of Multi-Layered Video: Rate-Based and Credit-Based Approaches

    Full text link
    Network architectures that can efficiently transport high quality, multicast video are rapidly becoming a basic requirement of emerging multimedia applications. The main problem complicating multicast video transport is variation in network bandwidth constraints. An attractive solution to this problem is to use an adaptive, multi-layered video encoding mechanism. In this paper, we consider two such mechanisms for the support of video multicast; one is a rate-based mechanism that relies on explicit rate congestion feedback from the network, and the other is a credit-based mechanism that relies on hop-by-hop congestion feedback. The responsiveness, bandwidth utilization, scalability and fairness of the two mechanisms are evaluated through simulations. Results suggest that while the two mechanisms exhibit performance trade-offs, both are capable of providing a high quality video service in the presence of varying bandwidth constraints.Comment: 11 page

    System Level Synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty -- such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies.Comment: To appear in Annual Reviews in Contro

    Scalable laws for stable network congestion control

    Get PDF
    Discusses flow control in networks, in which sources control their rates based on feedback signals received from the network links, a feature present in current TCP protocols. We develop a congestion control system which is arbitrarily scalable, in the sense that its stability is maintained for arbitrary network topologies and arbitrary amounts of delay. Such a system can be implemented in a decentralized way with information currently available in networks plus a small amount of additional signaling

    Analysis and control of monolithic piezoelectric nano-actuator

    Get PDF
    The study of the monolithic piezoelectric actuator, the dominant type of micropositioner is an attractive and challenging area, where realtime control theory and digital signal processing are effectively applied. The actuator can be applied in precision instruments and precision control, such as microscopes, medical and optics instruments because of the piezoelectric ceramic\u27s high resolution, fast transient response, and potential low cost. However, hysteresis nonlinearity and lightly damped vibration exist in the system, which limit the actuator applications. This work focuses on the hysteresis characteristics in time and frequency domains along with experimental and simulated results to verify the effectiveness of the model in describing the hysteresis phenomena. The analytic expressions of the hysteresis harmonics are further applied in hysteresis parameter estimation. A reduced order nonlinear hysteresis observer compensator is proposed, and the stability of the compensated system is discussed. The compensator reduces the hysteresis effect significantly under simulated and experimental conditions. Furthermore, an adaptive hysteresis observer compensator is further presented to compensate the slowly changed hysteresis parameters. Time division multi-control strategy is proposed to implement fast transient response, low vibration and high resolution. Extensive numerical simulation and real-time experiment are carried out to verify the control strategies. GUI is developed to implement the communication between the code in DSP memory and Labview, which improves the efficiency in system test
    • …
    corecore