96,180 research outputs found

    Preparing HPC Applications for the Exascale Era: A Decoupling Strategy

    Full text link
    Production-quality parallel applications are often a mixture of diverse operations, such as computation- and communication-intensive, regular and irregular, tightly coupled and loosely linked operations. In conventional construction of parallel applications, each process performs all the operations, which might result inefficient and seriously limit scalability, especially at large scale. We propose a decoupling strategy to improve the scalability of applications running on large-scale systems. Our strategy separates application operations onto groups of processes and enables a dataflow processing paradigm among the groups. This mechanism is effective in reducing the impact of load imbalance and increases the parallel efficiency by pipelining multiple operations. We provide a proof-of-concept implementation using MPI, the de-facto programming system on current supercomputers. We demonstrate the effectiveness of this strategy by decoupling the reduce, particle communication, halo exchange and I/O operations in a set of scientific and data-analytics applications. A performance evaluation on 8,192 processes of a Cray XC40 supercomputer shows that the proposed approach can achieve up to 4x performance improvement.Comment: The 46th International Conference on Parallel Processing (ICPP-2017

    Towards Distributed Model Transformations with LinTra

    Get PDF
    Performance and scalability of model transformations are becoming prominent topics in Model-Driven Engineering. In previous works we introduced LinTra, a platform for executing model transformations in parallel. LinTra is based on the Linda model of a coordination language and is intended to be used as a middleware where high-level model transformation languages are compiled. In this paper we present the initial results of our analyses on the scalability of out-place model-to-model transformation executions in LinTra when the models and the processing elements are distributed over a set of machines.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Parallel distributed algorithms of the beta-model of the small world graphs

    Get PDF
    The research goal is to develop a large-scale agent-based simulation environment to support implementations of Internet simulation applications.The Small Worlds (SW) graphs are used to model Web sites and social networks of Internet users. Each vertex represents the identity of a simple agent. In order to cope with scalability issues, we have to consider distributed parallel processing. The focus of this paper is to present two parallel-distributed algorithms for the construction of a particular type of SW graph called Beta-model. The first algorithm serializes the graph construction, while the second constructs the graph in parallel

    A Comparison of Parallel Graph Processing Implementations

    Full text link
    The rapidly growing number of large network analysis problems has led to the emergence of many parallel and distributed graph processing systems---one survey in 2014 identified over 80. Since then, the landscape has evolved; some packages have become inactive while more are being developed. Determining the best approach for a given problem is infeasible for most developers. To enable easy, rigorous, and repeatable comparison of the capabilities of such systems, we present an approach and associated software for analyzing the performance and scalability of parallel, open-source graph libraries. We demonstrate our approach on five graph processing packages: GraphMat, the Graph500, the Graph Algorithm Platform Benchmark Suite, GraphBIG, and PowerGraph using synthetic and real-world datasets. We examine previously overlooked aspects of parallel graph processing performance such as phases of execution and energy usage for three algorithms: breadth first search, single source shortest paths, and PageRank and compare our results to Graphalytics.Comment: 10 pages, 10 figures, Submitted to EuroPar 2017 and rejected. Revised and submitted to IEEE Cluster 201

    A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units

    Get PDF
    Agent-based modeling is a technique for modeling dynamic systems from the bottom up. Individual elements of the system are represented computationally as agents. The system-level behaviors emerge from the micro-level interactions of the agents. Contemporary state-of-the-art agent-based modeling toolkits are essentially discrete-event simulators designed to execute serially on the Central Processing Unit (CPU). They simulate Agent-Based Models (ABMs) by executing agent actions one at a time. In addition to imposing an un-natural execution order, these toolkits have limited scalability. In this article, we investigate data-parallel computer architectures such as Graphics Processing Units (GPUs) to simulate large scale ABMs. We have developed a series of efficient, data parallel algorithms for handling environment updates, various agent interactions, agent death and replication, and gathering statistics. We present three fundamental innovations that provide unprecedented scalability. The first is a novel stochastic memory allocator which enables parallel agent replication in O(1) average time. The second is a technique for resolving precedence constraints for agent actions in parallel. The third is a method that uses specialized graphics hardware, to gather and process statistical measures. These techniques have been implemented on a modern day GPU resulting in a substantial performance increase. We believe that our system is the first ever completely GPU based agent simulation framework. Although GPUs are the focus of our current implementations, our techniques can easily be adapted to other data-parallel architectures. We have benchmarked our framework against contemporary toolkits using two popular ABMs, namely, SugarScape and StupidModel.GPGPU, Agent Based Modeling, Data Parallel Algorithms, Stochastic Simulations
    • …
    corecore