26 research outputs found

    Variation Analysis, Fault Modeling and Yield Improvement of Emerging Spintronic Memories

    Get PDF

    STT-MRAM characterization and its test implications

    Get PDF
    Spin torque transfer (STT)-magnetoresistive random-access memory (MRAM) has come a long way in research to meet the speed and power consumption requirements for future memory applications. The state-of-the-art STT-MRAM bit-cells employ magnetic tunnel junction (MTJ) with perpendicular magnetic anisotropy (PMA). The process repeatabil- ity and yield stability for wafer fabrication are some of the critical issues encountered in STT-MRAM mass production. Some of the yield improvement techniques to combat the e ect of process variations have been previously explored. However, little research has been done on defect oriented testing of STT-MRAM arrays. In this thesis, the author investi- gates the parameter deviation and non-idealities encountered during the development of a novel MTJ stack con guration. The characterization result provides motivation for the development of the design for testability (DFT) scheme that can help test and characterize STT-MRAM bit-cells and the CMOS peripheral circuitry e ciently. The primary factors for wafer yield degradation are the device parameter variation and its non-uniformity across the wafer due to the fabrication process non-idealities. There- fore, e ective in-process testing strategies for exploring and verifying the impact of the parameter variation on the wafer yield will be needed to achieve fabrication process opti- mization. While yield depends on the CMOS process variability, quality of the deposited MTJ lm, and other process non-idealities, test platform can enable parametric optimiza- tion and veri cation using the CMOS-based DFT circuits. In this work, we develop a DFT algorithm and implement a DFT circuit for parametric testing and prequali cation of the critical circuits in the CMOS wafer. The DFT circuit successfully replicates the electrical characteristics of MTJ devices and captures their spatial variation across the wafer with an error of less than 4%. We estimate the yield of the read sensing path by implement- ing the DFT circuit, which can replicate the resistance-area product variation up to 50% from its nominal value. The yield data from the read sensing path at di erent wafer loca- tions are analyzed, and a usable wafer radius has been estimated. Our DFT scheme can provide quantitative feedback based on in-die measurement, enabling fabrication process optimization through iterative estimation and veri cation of the calibrated parameters. Another concern that prevents mass production of STT-MRAM arrays is the defect formation in MTJ devices due to aging. Identifying manufacturing defects in the magnetic tunnel junction (MTJ) device is crucial for the yield and reliability of spin-torque-transfer (STT) magnetic random-access memory (MRAM) arrays. Several of the MTJ defects result in parametric deviations of the device that deteriorate over time. We extend our work on the DFT scheme by monitoring the electrical parameter deviations occurring due to the defect formation over time. A programmable DFT scheme was implemented for a sub-arrayin 65 nm CMOS technology to evaluate the feasibility of the test scheme. The scheme utilizes the read sense path to compare the bit-cell electrical parameters against known DFT cells characteristics. Built-in-self-test (BIST) methodology is utilized to trigger the onset of the fault once the device parameter crosses a threshold value. We demonstrate the operation and evaluate the accuracy of detection with the proposed scheme. The DFT scheme can be exploited for monitoring aging defects, modeling their behavior and optimization of the fabrication process. DFT scheme could potentially nd numerous applications for parametric characteriza- tion and fault monitoring of STT-MRAM bit-cell arrays during mass production. Some of the applications include a) Fabrication process feedback to improve wafer turnaround time, b) STT-MRAM bit-cell health monitoring, c) Decoupled characterization of the CMOS pe- ripheral circuitry such as read-sensing path and sense ampli er characterization within the STT-MRAM array. Additionally, the DFT scheme has potential applications for detec- tion of fault formation that could be utilized for deploying redundancy schemes, providing a graceful degradation in MTJ-based bit-cell array due to aging of the device, and also providing feedback to improve the fabrication process and yield learning

    Architectural Support for High-Performance, Power-Efficient and Secure Multiprocessor Systems

    Get PDF
    High performance systems have been widely adopted in many fields and the demand for better performance is constantly increasing. And the need of powerful yet flexible systems is also increasing to meet varying application requirements from diverse domains. Also, power efficiency in high performance computing has been one of the major issues to be resolved. The power density of core components becomes significantly higher, and the fraction of power supply in total management cost is dominant. Providing dependability is also a main concern in large-scale systems since more hardware resources can be abused by attackers. Therefore, designing high-performance, power-efficient and secure systems is crucial to provide adequate performance as well as reliability to users. Adhering to using traditional design methodologies for large-scale computing systems has a limit to meet the demand under restricted resource budgets. Interconnecting a large number of uniprocessor chips to build parallel processing systems is not an efficient solution in terms of performance and power. Chip multiprocessor (CMP) integrates multiple processing cores and caches on a chip and is thought of as a good alternative to previous design trends. In this dissertation, we deal with various design issues of high performance multiprocessor systems based on CMP to achieve both performance and power efficiency while maintaining security. First, we propose a fast and secure off-chip interconnects through minimizing network overheads and providing an efficient security mechanism. Second, we propose architectural support for fast and efficient memory protection in CMP systems, making the best use of the characteristics in CMP environments and multi-threaded workloads. Third, we propose a new router design for network-on-chip (NoC) based on a new memory technique. We introduce hybrid input buffers that use both SRAM and STT-MRAM for better performance as well as power efficiency. Simulation results show that the proposed schemes improve the performance of off-chip networks through reducing the message size by 54% on average. Also, the schemes diminish the overheads of bounds checking operations, thus enhancing the overall performance by 11% on average. Adopting hybrid buffers in NoC routers contributes to increasing the network throughput up to 21%
    corecore