912 research outputs found

    Scalable dimensioning of resilient Lambda Grids

    Get PDF
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit

    Dimensionerings- en werkverdelingsalgoritmen voor lambda grids

    Get PDF
    Grids bestaan uit een verzameling reken- en opslagelementen die geografisch verspreid kunnen zijn, maar waarvan men de gezamenlijke capaciteit wenst te benutten. Daartoe dienen deze elementen verbonden te worden met een netwerk. Vermits veel wetenschappelijke applicaties gebruik maken van een Grid, en deze applicaties doorgaans grote hoeveelheden data verwerken, is het noodzakelijk om een netwerk te voorzien dat dergelijke grote datastromen op betrouwbare wijze kan transporteren. Optische transportnetwerken lenen zich hier uitstekend toe. Grids die gebruik maken van dergelijk netwerk noemt men lambda Grids. Deze thesis beschrijft een kader waarin het ontwerp en dimensionering van optische netwerken voor lambda Grids kunnen beschreven worden. Ook wordt besproken hoe werklast kan verdeeld worden op een Grid eens die gedimensioneerd is. Een groot deel van de resultaten werd bekomen door simulatie, waarbij gebruik gemaakt wordt van een eigen Grid simulatiepakket dat precies focust op netwerk- en Gridelementen. Het ontwerp van deze simulator, en de daarbijhorende implementatiekeuzes worden dan ook uitvoerig toegelicht in dit werk

    Parallel optimization algorithms for high performance computing : application to thermal systems

    Get PDF
    The need of optimization is present in every field of engineering. Moreover, applications requiring a multidisciplinary approach in order to make a step forward are increasing. This leads to the need of solving complex optimization problems that exceed the capacity of human brain or intuition. A standard way of proceeding is to use evolutionary algorithms, among which genetic algorithms hold a prominent place. These are characterized by their robustness and versatility, as well as their high computational cost and low convergence speed. Many optimization packages are available under free software licenses and are representative of the current state of the art in optimization technology. However, the ability of optimization algorithms to adapt to massively parallel computers reaching satisfactory efficiency levels is still an open issue. Even packages suited for multilevel parallelism encounter difficulties when dealing with objective functions involving long and variable simulation times. This variability is common in Computational Fluid Dynamics and Heat Transfer (CFD & HT), nonlinear mechanics, etc. and is nowadays a dominant concern for large scale applications. Current research in improving the performance of evolutionary algorithms is mainly focused on developing new search algorithms. Nevertheless, there is a vast knowledge of sequential well-performing algorithmic suitable for being implemented in parallel computers. The gap to be covered is efficient parallelization. Moreover, advances in the research of both new search algorithms and efficient parallelization are additive, so that the enhancement of current state of the art optimization software can be accelerated if both fronts are tackled simultaneously. The motivation of this Doctoral Thesis is to make a step forward towards the successful integration of Optimization and High Performance Computing capabilities, which has the potential to boost technological development by providing better designs, shortening product development times and minimizing the required resources. After conducting a thorough state of the art study of the mathematical optimization techniques available to date, a generic mathematical optimization tool has been developed putting a special focus on the application of the library to the field of Computational Fluid Dynamics and Heat Transfer (CFD & HT). Then the main shortcomings of the standard parallelization strategies available for genetic algorithms and similar population-based optimization methods have been analyzed. Computational load imbalance has been identified to be the key point causing the degradation of the optimization algorithm¿s scalability (i.e. parallel efficiency) in case the average makespan of the batch of individuals is greater than the average time required by the optimizer for performing inter-processor communications. It occurs because processors are often unable to finish the evaluation of their queue of individuals simultaneously and need to be synchronized before the next batch of individuals is created. Consequently, the computational load imbalance is translated into idle time in some processors. Several load balancing algorithms have been proposed and exhaustively tested, being extendable to any other population-based optimization method that needs to synchronize all processors after the evaluation of each batch of individuals. Finally, a real-world engineering application that consists on optimizing the refrigeration system of a power electronic device has been presented as an illustrative example in which the use of the proposed load balancing algorithms is able to reduce the simulation time required by the optimization tool.El aumento de las aplicaciones que requieren de una aproximación multidisciplinar para poder avanzar se constata en todos los campos de la ingeniería, lo cual conlleva la necesidad de resolver problemas de optimización complejos que exceden la capacidad del cerebro humano o de la intuición. En estos casos es habitual el uso de algoritmos evolutivos, principalmente de los algoritmos genéticos, caracterizados por su robustez y versatilidad, así como por su gran coste computacional y baja velocidad de convergencia. La multitud de paquetes de optimización disponibles con licencias de software libre representan el estado del arte actual en tecnología de optimización. Sin embargo, la capacidad de adaptación de los algoritmos de optimización a ordenadores masivamente paralelos alcanzando niveles de eficiencia satisfactorios es todavía una tarea pendiente. Incluso los paquetes adaptados al paralelismo multinivel tienen dificultades para gestionar funciones objetivo que requieren de tiempos de simulación largos y variables. Esta variabilidad es común en la Dinámica de Fluidos Computacional y la Transferencia de Calor (CFD & HT), mecánica no lineal, etc. y es una de las principales preocupaciones en aplicaciones a gran escala a día de hoy. La investigación actual que tiene por objetivo la mejora del rendimiento de los algoritmos evolutivos está enfocada principalmente al desarrollo de nuevos algoritmos de búsqueda. Sin embargo, ya se conoce una gran variedad de algoritmos secuenciales apropiados para su implementación en ordenadores paralelos. La tarea pendiente es conseguir una paralelización eficiente. Además, los avances en la investigación de nuevos algoritmos de búsqueda y la paralelización son aditivos, por lo que el proceso de mejora del software de optimización actual se verá incrementada si se atacan ambos frentes simultáneamente. La motivación de esta Tesis Doctoral es avanzar hacia una integración completa de las capacidades de Optimización y Computación de Alto Rendimiento para así impulsar el desarrollo tecnológico proporcionando mejores diseños, acortando los tiempos de desarrollo del producto y minimizando los recursos necesarios. Tras un exhaustivo estudio del estado del arte de las técnicas de optimización matemática disponibles a día de hoy, se ha diseñado una librería de optimización orientada al campo de la Dinámica de Fluidos Computacional y la Transferencia de Calor (CFD & HT). A continuación se han analizado las principales limitaciones de las estrategias de paralelización disponibles para algoritmos genéticos y otros métodos de optimización basados en poblaciones. En el caso en que el tiempo de evaluación medio de la tanda de individuos sea mayor que el tiempo medio que necesita el optimizador para llevar a cabo comunicaciones entre procesadores, se ha detectado que la causa principal de la degradación de la escalabilidad o eficiencia paralela del algoritmo de optimización es el desequilibrio de la carga computacional. El motivo es que a menudo los procesadores no terminan de evaluar su cola de individuos simultáneamente y deben sincronizarse antes de que se cree la siguiente tanda de individuos. Por consiguiente, el desequilibrio de la carga computacional se convierte en tiempo de inactividad en algunos procesadores. Se han propuesto y testado exhaustivamente varios algoritmos de equilibrado de carga aplicables a cualquier método de optimización basado en una población que necesite sincronizar los procesadores tras cada tanda de evaluaciones. Finalmente, se ha presentado como ejemplo ilustrativo un caso real de ingeniería que consiste en optimizar el sistema de refrigeración de un dispositivo de electrónica de potencia. En él queda demostrado que el uso de los algoritmos de equilibrado de carga computacional propuestos es capaz de reducir el tiempo de simulación que necesita la herramienta de optimización

    Optimizing Data Intensive Flows for Networks on Chips

    Get PDF
    Data flow analysis and optimization is considered for homogeneous rectangular mesh networks. We propose a flow matrix equation which allows a closed-form characterization of the nature of the minimal time solution, speedup and a simple method to determine when and how much load to distribute to processors. We also propose a rigorous mathematical proof about the flow matrix optimal solution existence and that the solution is unique. The methodology introduced here is applicable to many interconnection networks and switching protocols (as an example we examine toroidal networks and hypercube networks in this paper). An important application is improving chip area and chip scalability for networks on chips processing divisible style loads

    Load Balancing in Cloud Computing Systems

    Get PDF
    Cloud computing" is a term, which involves virtualization, distributed computing, networking, software and web services. A cloud consists of several elements such as clients, datacenter and distributed servers. It includes fault tolerance, high availability, scalability, flexibility, reduced overhead for users, reduced cost of ownership, on demand services etc. Central to these issues lies the establishment of an effective load balancing algorithm. The load can be CPU load, memory capacity, delay or network load. Load balancing is the process of distributing the load among various nodes of a distributed system to improve both resource utilization and job response time while also avoiding a situation where some of the nodes are heavily loaded while other nodes are idle or doing very little work. Load balancing ensures that all the processor in the system or every node in the network does approximately the equal amount of work at any instant of time. This technique can be sender initiated, receiver initiated or symmetric type (combination of sender initiated and receiver initiated types). Our objective is to develop an effective load balancing algorithm using Divisible load scheduling theorm to maximize or minimize different performance parameters (throughput, latency for example) for the clouds of different sizes (virtual topology depending on the application requirement)

    Efficient Parallel Video Encoding on Heterogeneous Systems

    Get PDF
    Proceedings of: First International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2014). Porto (Portugal), August 27-28, 2014.In this study we propose an efficient method for collaborative H.264/AVC inter-loop encoding in heterogeneous CPU+GPU systems. This method relies on specifically developed extensive library of highly optimized parallel algorithms for both CPU and GPU architectures, and all inter-loop modules. In order to minimize the overall encoding time, this method integrates adaptive load balancing for the most computationally intensive, inter-prediction modules, which is based on dynamically built functional performance models of heterogenous devices and inter-loop modules. The proposed method also introduces efficient communication-aware techniques, which maximize data reusing, and decrease the overhead of expensive data transfers in collaborative video encoding. The experimental results show that the proposed method is able of achieving real-time video encoding for very demanding video coding parameters, i.e., full HD video format, 64×64 pixels search area and the exhaustive motion estimation.This work was supported by national funds through FCT – Fundação para a Ciência e a Tecnologia, under projects PEst-OE/EEI/LA0021/2013, PTDC/EEI-ELC/3152/2012 and PTDC/EEA-ELC/117329/2010

    Flexible Deep Learning in Edge Computing for Internet of Things

    Get PDF
    Deep learning is a promising approach for extracting accurate information from raw sensor data from IoT devices deployed in complex environments. Because of its multilayer structure, deep learning is also appropriate for the edge computing environment. Traditional edge computing models have rigid characteristics. Flexible edge computing architecture solves rigidity in IoT edge computing. Proposed model combines deep learning into edge computing and flexible edge computing architecture using multiple agents. Since existing edge nodes have limited processing capability, we also design a novel offloading strategy to optimize the performance of IoT deep learning applications with edge computing. FEC architecture is a flexible and advanced IoT system model characterized by environment adaptation ability and user orientation ability. In the performance evaluation, we test the performance of executing deep learning tasks in FEC architecture for edge computing environment. The evaluation results show that our method outperforms other optimization solutions on deep learning for IoT
    corecore