987 research outputs found

    ORLA*: Mobile Manipulator-Based Object Rearrangement with Lazy A*

    Full text link
    Effectively performing object rearrangement is an essential skill for mobile manipulators, e.g., setting up a dinner table or organizing a desk. A key challenge in such problems is deciding an appropriate manipulation order for objects to effectively untangle dependencies between objects while considering the necessary motions for realizing the manipulations (e.g., pick and place). To our knowledge, computing time-optimal multi-object rearrangement solutions for mobile manipulators remains a largely untapped research direction. In this research, we propose ORLA*, which leverages delayed (lazy) evaluation in searching for a high-quality object pick and place sequence that considers both end-effector and mobile robot base travel. ORLA* also supports multi-layered rearrangement tasks considering pile stability using machine learning. Employing an optimal solver for finding temporary locations for displacing objects, ORLA* can achieve global optimality. Through extensive simulation and ablation study, we confirm the effectiveness of ORLA* delivering quality solutions for challenging rearrangement instances. Supplementary materials are available at: https://gaokai15.github.io/ORLA-Star/Comment: Submitted to ICRA 202

    Smart sensing and adaptive reasoning for enabling industrial robots with interactive human-robot capabilities in dynamic environments—a case study

    Get PDF
    Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment. Therefore, this vision allows the detection and localization of a randomly moving obstacle. Path correction to avoid collision avoidance for such obstacles with robotic manipulator is achieved by exploiting an adaptive path planning module along with a dedicated robot control module, where the three modules run simultaneously. These sensing/smart capabilities allow the smooth interactions between the robot and its dynamic environment, where the robot needs to react to dynamic changes through autonomous thinking and reasoning with the reaction times below the average human reaction time. The experimental results demonstrate that effective human-robot and robot-robot interactions can be realized through the innovative integration of emerging sensing techniques, efficient planning algorithms and systematic designs

    Bimanual robotic manipulation based on potential fields

    Get PDF
    openDual manipulation is a natural skill for humans but not so easy to achieve for a robot. The presence of two end effectors implies the need to consider the temporal and spatial constraints they generate while moving together. Consequently, synchronization between the arms is required to perform coordinated actions (e.g., lifting a box) and to avoid self-collision between the manipulators. Moreover, the challenges increase in dynamic environments, where the arms must be able to respond quickly to changes in the position of obstacles or target objects. To meet these demands, approaches like optimization-based motion planners and imitation learning can be employed but they have limitations such as high computational costs, or the need to create a large dataset. Sampling-based motion planners can be a viable solution thanks to their speed and low computational costs but, in their basic implementation, the environment is assumed to be static. An alternative approach relies on improved Artificial Potential Fields (APF). They are intuitive, with low computational, and, most importantly, can be used in dynamic environments. However, they do not have the precision to perform manipulation actions, and dynamic goals are not considered. This thesis proposes a system for bimanual robotic manipulation based on a combination of improved Artificial Potential Fields (APF) and the sampling-based motion planner RRTConnect. The basic idea is to use improved APF to bring the end effectors near their target goal while reacting to changes in the surrounding environment. Only then RRTConnect is triggered to perform the manipulation task. In this way, it is possible to take advantage of the strengths of both methods. To improve this system APF have been extended to consider dynamic goals and a self-collision avoidance system has been developed. The conducted experiments demonstrate that the proposed system adeptly responds to changes in the position of obstacles and target objects. Moreover, the self-collision avoidance system enables faster dual manipulation routines compared to sequential arm movements
    • …
    corecore