10,328 research outputs found

    Saturation estimates for hp -finite element methods

    Get PDF
    In this paper we will prove saturation estimates for the adaptive hphp h p -finite element method for linear, second order partial differential equations. More specifically we will consider a sequence of nested finite element discretizations where we allow for both, local mesh refinement and locally increasing the polynomial order. We will prove that the energy norm of the error on the finer level can be estimated by the sum of a contraction of the old error and data oscillations. We will derive estimates of the contraction factor which are explicit with respect to the local mesh width and the local polynomial degree. In order to cover pp p -refinement of finite element spaces new polynomial projection operators will be introduced and new polynomial inverse estimates will be derive

    On p-Robust Saturation for hp-AFEM

    Full text link
    We consider the standard adaptive finite element loop SOLVE, ESTIMATE, MARK, REFINE, with ESTIMATE being implemented using the pp-robust equilibrated flux estimator, and MARK being D\"orfler marking. As a refinement strategy we employ pp-refinement. We investigate the question by which amount the local polynomial degree on any marked patch has to be increase in order to achieve a pp-independent error reduction. The resulting adaptive method can be turned into an instance optimal hphp-adaptive method by the addition of a coarsening routine

    Adaptive boundary element methods with convergence rates

    Full text link
    This paper presents adaptive boundary element methods for positive, negative, as well as zero order operator equations, together with proofs that they converge at certain rates. The convergence rates are quasi-optimal in a certain sense under mild assumptions that are analogous to what is typically assumed in the theory of adaptive finite element methods. In particular, no saturation-type assumption is used. The main ingredients of the proof that constitute new findings are some results on a posteriori error estimates for boundary element methods, and an inverse-type inequality involving boundary integral operators on locally refined finite element spaces.Comment: 48 pages. A journal version. The previous version (v3) is a bit lengthie

    Space-Time Isogeometric Analysis of Parabolic Evolution Equations

    Full text link
    We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces

    A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square

    Get PDF
    Both practice and analysis of adaptive pp-FEMs and hphp-FEMs raise the question what increment in the current polynomial degree pp guarantees a pp-independent reduction of the Galerkin error. We answer this question for the pp-FEM in the simplified context of homogeneous Dirichlet problems for the Poisson equation in the two dimensional unit square with polynomial data of degree pp. We show that an increment proportional to pp yields a pp-robust error reduction and provide computational evidence that a constant increment does not
    • …
    corecore