694 research outputs found

    Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals

    Get PDF
    Following the methods used by Derksen-Weyman in \cite{DW11} and Chindris in \cite{Chi08}, we use quiver theory to represent the generalized Littlewood-Richardson coefficients for the branching rule for the diagonal embedding of \gl(n) as the dimension of a weight space of semi-invariants. Using this, we prove their saturation and investigate when they are nonzero. We also show that for certain partitions the associated stretched polynomials satisfy the same conjectures as single Littlewood-Richardson coefficients. We then provide a polytopal description of this multiplicity and show that its positivity may be computed in strongly polynomial time. Finally, we remark that similar results hold for certain other generalized Littlewood-Richardson coefficients.Comment: 28 pages, comments welcom

    VPSPACE and a Transfer Theorem over the Reals

    Get PDF
    We introduce a new class VPSPACE of families of polynomials. Roughly speaking, a family of polynomials is in VPSPACE if its coefficients can be computed in polynomial space. Our main theorem is that if (uniform, constant-free) VPSPACE families can be evaluated efficiently then the class PAR of decision problems that can be solved in parallel polynomial time over the real numbers collapses to P. As a result, one must first be able to show that there are VPSPACE families which are hard to evaluate in order to separate over the reals P from NP, or even from PAR.Comment: Full version of the paper (appendices of the first version are now included in the text

    VPSPACE and a transfer theorem over the complex field

    Get PDF
    We extend the transfer theorem of [KP2007] to the complex field. That is, we investigate the links between the class VPSPACE of families of polynomials and the Blum-Shub-Smale model of computation over C. Roughly speaking, a family of polynomials is in VPSPACE if its coefficients can be computed in polynomial space. Our main result is that if (uniform, constant-free) VPSPACE families can be evaluated efficiently then the class PAR of decision problems that can be solved in parallel polynomial time over the complex field collapses to P. As a result, one must first be able to show that there are VPSPACE families which are hard to evaluate in order to separate P from NP over C, or even from PAR.Comment: 14 page

    Semi-definite programming and functional inequalities for Distributed Parameter Systems

    Full text link
    We study one-dimensional integral inequalities, with quadratic integrands, on bounded domains. Conditions for these inequalities to hold are formulated in terms of function matrix inequalities which must hold in the domain of integration. For the case of polynomial function matrices, sufficient conditions for positivity of the matrix inequality and, therefore, for the integral inequalities are cast as semi-definite programs. The inequalities are used to study stability of linear partial differential equations.Comment: 8 pages, 5 figure
    corecore