160 research outputs found

    Unified Analysis of Collapsible and Ordered Pushdown Automata via Term Rewriting

    Full text link
    We model collapsible and ordered pushdown systems with term rewriting, by encoding higher-order stacks and multiple stacks into trees. We show a uniform inverse preservation of recognizability result for the resulting class of term rewriting systems, which is obtained by extending the classic saturation-based approach. This result subsumes and unifies similar analyses on collapsible and ordered pushdown systems. Despite the rich literature on inverse preservation of recognizability for term rewrite systems, our result does not seem to follow from any previous study.Comment: in Proc. of FRE

    Reachability analysis of first-order definable pushdown systems

    Get PDF
    We study pushdown systems where control states, stack alphabet, and transition relation, instead of being finite, are first-order definable in a fixed countably-infinite structure. We show that the reachability analysis can be addressed with the well-known saturation technique for the wide class of oligomorphic structures. Moreover, for the more restrictive homogeneous structures, we are able to give concrete complexity upper bounds. We show ample applicability of our technique by presenting several concrete examples of homogeneous structures, subsuming, with optimal complexity, known results from the literature. We show that infinitely many such examples of homogeneous structures can be obtained with the classical wreath product construction.Comment: to appear in CSL'1

    Model-Checking of Ordered Multi-Pushdown Automata

    Full text link
    We address the verification problem of ordered multi-pushdown automata: A multi-stack extension of pushdown automata that comes with a constraint on stack transitions such that a pop can only be performed on the first non-empty stack. First, we show that the emptiness problem for ordered multi-pushdown automata is in 2ETIME. Then, we prove that, for an ordered multi-pushdown automata, the set of all predecessors of a regular set of configurations is an effectively constructible regular set. We exploit this result to solve the global model-checking which consists in computing the set of all configurations of an ordered multi-pushdown automaton that satisfy a given w-regular property (expressible in linear-time temporal logics or the linear-time \mu-calculus). As an immediate consequence, we obtain an 2ETIME upper bound for the model-checking problem of w-regular properties for ordered multi-pushdown automata (matching its lower-bound).Comment: 31 page

    An algebraic approach to analysis of recursive and concurrent programs

    Get PDF
    • …
    corecore