62 research outputs found

    Analytic Tableaux for Simple Type Theory and its First-Order Fragment

    Full text link
    We study simple type theory with primitive equality (STT) and its first-order fragment EFO, which restricts equality and quantification to base types but retains lambda abstraction and higher-order variables. As deductive system we employ a cut-free tableau calculus. We consider completeness, compactness, and existence of countable models. We prove these properties for STT with respect to Henkin models and for EFO with respect to standard models. We also show that the tableau system yields a decision procedure for three EFO fragments

    A theory of resolution

    No full text
    We review the fundamental resolution-based methods for first-order theorem proving and present them in a uniform framework. We show that these calculi can be viewed as specializations of non-clausal resolution with simplification. Simplification techniques are justified with the help of a rather general notion of redundancy for inferences. As simplification and other techniques for the elimination of redundancy are indispensable for an acceptable behaviour of any practical theorem prover this work is the first uniform treatment of resolution-like techniques in which the avoidance of redundant computations attains the attention it deserves. In many cases our presentation of a resolution method will indicate new ways of how to improve the method over what was known previously. We also give answers to several open problems in the area

    Refutation Systems : An Overview and Some Applications to Philosophical Logics

    Get PDF
    Refutation systems are systems of formal, syntactic derivations, designed to derive the non-valid formulas or logical consequences of a given logic. Here we provide an overview with comprehensive references on the historical development of the theory of refutation systems and discuss some of their applications to philosophical logics

    Modal Hybrid Logic

    Get PDF
    This is an extended version of the lectures given during the 12-th Conference on Applications of Logic in Philosophy and in the Foundations of Mathematics in Szklarska Poręba (7–11 May 2007). It contains a survey of modal hybrid logic, one of the branches of contemporary modal logic. In the first part a variety of hybrid languages and logics is presented with a discussion of expressivity matters. The second part is devoted to thorough exposition of proof methods for hybrid logics. The main point is to show that application of hybrid logics may remarkably improve the situation in modal proof theory

    Superposition for Lambda-Free Higher-Order Logic

    Get PDF
    We introduce refutationally complete superposition calculi for intentional and extensional clausal λ\lambda-free higher-order logic, two formalisms that allow partial application and applied variables. The calculi are parameterized by a term order that need not be fully monotonic, making it possible to employ the λ\lambda-free higher-order lexicographic path and Knuth-Bendix orders. We implemented the calculi in the Zipperposition prover and evaluated them on Isabelle/HOL and TPTP benchmarks. They appear promising as a stepping stone towards complete, highly efficient automatic theorem provers for full higher-order logic

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    • …
    corecore