599 research outputs found

    Hop-Based dynamic fair scheduler for wireless Ad-Hoc networks

    Get PDF
    In a typical multihop Ad-Hoc network, interference and contention increase when flows transit each node towards destination, particularly in the presence of cross-traffic. This paper observes the relationship between throughput and path length, self-contention and interference and it investigates the effect of multiple data rates over multiple data flows in the network. Drawing from the limitations of the 802.11 specification, the paper proposes a scheduler named Hop Based Multi Queue (HBMQ), which is designed to prioritise traffic based on the hop count of packets in order to provide fairness across different data flows. The simulation results demonstrate that HBMQ performs better than a Single Drop Tail Queue (SDTQ) scheduler in terms of providing fairness. Finally, the paper concludes with a number of possible directions for further research, focusing on cross-layer implementation to ensure the fairness is also provided at the MAC layer. © 2013 IEEE

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Hybrid routing and bridging strategies for large scale mobile ad hoc networks

    Get PDF
    Multi-hop packet radio networks (or mobile ad-hoc networks) are an ideal technology to establish instant communication infrastructure for military and civilian applications in which both hosts and routers are mobile. In this dissertation, a position-based/link-state hybrid, proactive routing protocol (Position-guided Sliding-window Routing - PSR) that provides for a flat, mobile ad-hoc routing architecture is described, analyzed and evaluated. PSR is based on the superposition of link-state and position-based routing, and it employs a simplified way of localizing routing overhead, without having to resort to complex, multiple-tier routing organization schemes. A set of geographic routing zones is defined for each node, where the purpose of the ith routing zone is to restrict propagation of position updates, advertising position differentials equal to the radius of the (i-i )th routing zone. Thus, the proposed protocol controls position-update overhead generation and propagation by making the overhead generation rate and propagation distance directly proportional to the amount of change in a node\u27s geographic position. An analytical model and framework is provided, in order to study the various design issues and trade-offs of PSR routing mechanism, discuss their impact on the protocol\u27s operation and effectiveness, and identify optimal values for critical design parameters, under different mobility scenarios. In addition an in-depth performance evaluation, via modeling and simulation, was performed in order to demonstrate PSR\u27s operational effectiveness in terms of scalability, mobility support, and efficiency. Furthermore, power and energy metrics, such as path fading and battery capacity considerations, are integrated into the routing decision (cost function) in order to improve PSR\u27s power efficiency and network lifetime. It is demonstrated that the proposed routing protocol is ideal for deployment and implementation especially in large scale mobile ad hoc networks. Wireless local area networks (WLAN) are being deployed widely to support networking needs of both consumer and enterprise applications, and IEEE 802.11 specification is becoming the de facto standard for deploying WLAN. However IEEE 802.11 specifications allow only one hop communication between nodes. A layer-2 bridging solution is proposed in this dissertation, to increase the range of 802.11 base stations using ad hoc networking, and therefore solve the hotspot communication problem, where a large number of mobile users require Internet access through an access point. In the proposed framework nodes are divided into levels based on their distance (hops) from the access point. A layer-2 bridging tree is built based on the level concept, and a node in certain level only forwards packets to nodes in its neighboring level. The specific mechanisms for the forwarding tree establishment as well as for the data propagation are also introduced and discussed. An analytical model is also presented in order to analyze the saturation throughput of the proposed mechanism, while its applicability and effectiveness is evaluated via modeling and simulation. The corresponding numerical results demonstrate and confirm the significant area coverage extension that can be achieved by the solution, when compared with the conventional 802.1 lb scheme. Finally, for implementation purposes, a hierarchical network structure paradigm based on the combination of these two protocols and models is introduced

    Topology-aware transmission scheduling for distributed highway traffic monitoring wireless sensor networks

    Get PDF
    Wireless sensor networks have been deployed along highways for traffic monitoring. The thesis studies a set of transmission scheduling methods for optimizing network throughput, message transfer delay, and energy efficiency. Today\u27s traffic monitoring systems are centrally managed. Several studies have envisioned the advantages of distributed traffic management techniques. The thesis is based on previously proposed hierarchical sensor network architecture, for which the routing and transmission scheduling methods are derived. Wireless sensor networks have a lifetime limited by battery energy of the sensors. The thesis proposes to assign schedules for nodes to transmit and receive packets and turning off their radios during other times to save energy. The schedules are assigned to minimize the end-to-end packet delivery latency and maximize the network throughput. Conflict-free transmission slots are assigned to sensors along road segments leading to a common intersection based on locally discovered topology. The slot assignment adopts a heuristic that rotates among segments, assigns closest possible slots to neighboring nodes in a pipelined fashion, and exploits radio capture effects when possible. Based on the single-intersection approach, centralized and distributed multi-intersection scheduling methods are proposed to resolve conflicts among nodes belonging to different intersections. The centralized approach designates a controller as the leader to collect topology information of a set of contiguous intersections and assign schedules using the same single-intersection algorithm. The distributed approach has each intersection determine its own schedule independently and then exchange the topology information and schedules with its adjacent intersections to resolve conflicts locally. Based on simulation studies in ns-2, the centralized approach achieves better performance, while the distributed approach tries to approach the centralized performance at much lower communication costs. A communication cost analysis is performed to assess the trade-off between the centralized and distributed approaches

    An Overview of QoS Enhancements for Wireless Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) allow vehicles to form a self-organized network without the need for permanent infrastructure. Even though VANETs are mobile ad hoc networks (MANETs), because of the intrinsic characteristics of VANETs, several protocols designed for MANETs cannot be directly applied for VANETs. With high number of nodes and mobility, ensuring the Quality of Service (QoS) in VANET is a challenging task. QoS is essential to improve the communication efficiency in vehicular networks. Thus a study of QoS in VANET is useful as a fundamental for constructing an effective vehicular network. In this paper, we present a timeline of the development of the existing protocols for VANETs that try to support QoS. Moreover, we classify and characterize the existing QoS protocols for VANETs in a layered perspective. The review helps in understanding the strengths and weaknesses of the existing QoS protocols and also throws light on open issues that remain to be addressed. Keywords: QoS, VANET, Inter-Vehicle Communications, MAC, Routin

    System level modelling and design of hypergraph based wireless system area networks for multi-computer systems

    Get PDF
    This thesis deals with issues pertaining the wireless multicomputer interconnection networks namely topology and Medium Access Control (MAC). It argues that new channel assignment technique based on regular low-dimensional hypergraph networks, the dual radio wireless hypermesh, represents a promising alternative high-performance wireless interconnection network for the future multicomputers to shared communication medium networks and/or ordinary wireless mesh networks, which have been widely used in current wireless networks. The focus of this work is on improving the network throughput while maintaining a relatively low latency of a wireless network system. By means of a Carrier Sense Multiple Access (CSMA) based design of the MAC protocol and based on the desirable features of hypermesh network topology a relatively high performance network has been introduced. Compared to the CSMA shared communication channel model, which is currently the de facto MAC protocol for most of wireless networks, our design is shown to achieve a significant increase in network throughput with less average network latency for large number of communication nodes. SystemC model of the proposed wireless hypermesh, validated through mathematical models, are then introduced. The analysis has been incorporated in the proper SystemC design methodology which facilitates the integration of communication modelling into the design modelling at the early stages of the system development. Another important application of SystemC modelling techniques is to perform meaningful comparative studies of different protocols, or new implementations to determine which communication scenario performs better and the ability to modify models to test system sensitivity and tune performance. Effects of different design parameters (e.g., packet sizes, number of nodes) has been carried out throughout this work. The results shows that the proposed structure has out perform the existing shared medium network structure and it can support relatively high number of wireless connected computers than conventional networks

    Energy-Efficiency Analysis of a Distributed Queuing Medium Access Control Protocol for Biomedical Wireless Sensor Networks in Saturation Conditions

    Get PDF
    The aging population and the high quality of life expectations in our society lead to the need of more efficient and affordable healthcare solutions. For this reason, this paper aims for the optimization of Medium Access Control (MAC) protocols for biomedical wireless sensor networks or wireless Body Sensor Networks (BSNs). The hereby presented schemes always have in mind the efficient management of channel resources and the overall minimization of sensors’ energy consumption in order to prolong sensors’ battery life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions). In order to emphasize IEEE 802.15.4 MAC limitations, this article presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs), which serves as a link for the introduction and initial description of our here proposed Distributed Queuing (DQ) MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead
    • …
    corecore