380 research outputs found

    Throughput Analysis Model for IEEE 802.11e EDCA with Multiple Access Categories

    Get PDF
    IEEE 802.11e standard has been specified to support differentiated quality of service (QoS), one of the critical issues on the conventional IEEE 802.11 wireless local area networks (WLANs). Enhanced Distributed Channel Access (EDCA) is the fundamental and mandatory contention-based channel access method of IEEE 802.11e, and delivers traffic based on differentiated Access Categories (ACs). A general three dimensional Markov chain model of IEEE 802.11e EDCA for performance analysis is proposed in this paper. The analytical model considers multiple stations with an arbitrary number of different ACs. It also differentiates the contention window (CW) sizes and the arbitration interframe spaces (AIFSs), and considers virtual collision mechanism. Based on the model, the saturation throughput of EDCA is derived, and the accuracy of the proposed model is validated via simulations

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    Setting the parameters right for two-hop IEEE 802.11e ad hoc networks

    Get PDF
    Two-hop ad-hoc networks, in which some nodes forward traffic for multiple sources, with which they also compete for channel access suffer from large queues building up in bottleneck nodes. This problem can often be alleviated by using IEEE 802.11e to give preferential treatment to bottleneck nodes. Previous results have shown that differentiation parameters can be used to allocate capacity in a more efficient way in the two-hop scenario. However, the overall throughput of the bottleneck may differ considerably, depending on the differentiation method used. By applying a very fast and accurate analysis method, based on steady-state analysis of an QBD-type infinite Markov chain, we find the maximum throughput that is possible per differentiation parameter. All possible parameter settings are explored with respect to the maximum throughput conditioned on a maximum buffer occupancy. This design space exploration cannot be done with network simulators like NS2 or Opnet, as each simulation run simply takes to long.\ud The results, which have been validated by detailed simulations, show that by differentiating TXOP it is possible to achieve a throughput that is about 50% larger than when differentiating AIFS and CW_min.\u

    Real-Time Misbehavior Detection in IEEE 802.11e Based WLANs

    Full text link
    The Enhanced Distributed Channel Access (EDCA) specification in the IEEE 802.11e standard supports heterogeneous backoff parameters and arbitration inter-frame space (AIFS), which makes a selfish node easy to manipulate these parameters and misbehave. In this case, the network-wide fairness cannot be achieved any longer. Many existing misbehavior detectors, primarily designed for legacy IEEE 802.11 networks, become inapplicable in such a heterogeneous network configuration. In this paper, we propose a novel real-time hybrid-share (HS) misbehavior detector for IEEE 802.11e based wireless local area networks (WLANs). The detector keeps updating its state based on every successful transmission and makes detection decisions by comparing its state with a threshold. We develop mathematical analysis of the detector performance in terms of both false positive rate and average detection rate. Numerical results show that the proposed detector can effectively detect both contention window based and AIFS based misbehavior with only a short detection window.Comment: Accepted to IEEE Globecom 201

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    A Comprehensive Study of the Enhanced Distributed Control Access (EDCA) Function

    Get PDF
    This technical report presents a comprehensive study of the Enhanced Distributed Control Access (EDCA) function defined in IEEE 802.11e. All the three factors are considered. They are: contention window size (CW), arbitration inter-frame space (AIFS), and transmission opportunity limit (TXOP). We first propose a discrete Markov chain model to describe the channel activities governed by EDCA. Then we evaluate the individual as well as joint effects of each factor on the throughput and QoS performance. We obtain several insightful observations showing that judiciously using the EDCA service differentiation mechanism is important to achieve maximum bandwidth utilization and user-specified QoS performance. Guided by our theoretical study, we devise a general QoS framework that provides QoS in an optimal way. The means of realizing the framework in a specific network is yet to be studied
    • …
    corecore