241 research outputs found

    On upper bounds on the smallest size of a saturating set in a projective plane

    Full text link
    In a projective plane Πq\Pi _{q} (not necessarily Desarguesian) of order q,q, a point subset SS is saturating (or dense) if any point of ΠqS\Pi _{q}\setminus S is collinear with two points in S~S. Using probabilistic methods, the following upper bound on the smallest size s(2,q) s(2,q) of a saturating set in Πq\Pi _{q} is proved: \begin{equation*} s(2,q)\leq 2\sqrt{(q+1)\ln (q+1)}+2\thicksim 2\sqrt{q\ln q}. \end{equation*} We also show that for any constant c1c\ge 1 a random point set of size kk in Πq\Pi _{q} with 2c(q+1)ln(q+1)+2k<q21q+2q 2c\sqrt{(q+1)\ln(q+1)}+2\le k<\frac{q^{2}-1}{q+2}\thicksim q is a saturating set with probability greater than 11/(q+1)2c22.1-1/(q+1)^{2c^{2}-2}. Our probabilistic approach is also applied to multiple saturating sets. A point set SΠqS\subset \Pi_{q} is (1,μ)(1,\mu)-saturating if for every point QQ of ΠqS\Pi _{q}\setminus S the number of secants of SS through QQ is at least μ\mu , counted with multiplicity. The multiplicity of a secant \ell is computed as (#(S)2).{\binom{{\#(\ell \,\cap S)}}{{2}}}. The following upper bound on the smallest size sμ(2,q)s_{\mu }(2,q) of a (1,μ)(1,\mu)-saturating set in Πq\Pi_{q} is proved: \begin{equation*} s_{\mu }(2,q)\leq 2(\mu +1)\sqrt{(q+1)\ln (q+1)}+2\thicksim 2(\mu +1)\sqrt{ q\ln q}\,\text{ for }\,2\leq \mu \leq \sqrt{q}. \end{equation*} By using inductive constructions, upper bounds on the smallest size of a saturating set (as well as on a (1,μ)(1,\mu)-saturating set) in the projective space PG(N,q)PG(N,q) are obtained. All the results are also stated in terms of linear covering codes.Comment: 15 pages, 24 references, misprints are corrected, Sections 3-5 and some references are adde

    Rational points on K3 surfaces and derived equivalence

    Full text link
    We study K3 surfaces over non-closed fields and relate the notion of derived equivalence to arithmetic problems.Comment: 30 page

    On Saturating Sets in Small Projective Geometries

    Get PDF
    AbstractA set of points, S⊆PG(r, q), is said to be ϱ -saturating if, for any point x∈PG(r, q), there exist ϱ+ 1 points in S that generate a subspace in which x lies. The cardinality of a smallest possible set S with this property is denoted by k(r, q,ϱ ). We give a short survey of what is known about k(r, q, 1) and present new results for k(r, q, 2) for small values of r and q. One construction presented proves that k(5, q, 2) ≤ 3 q+ 1 forq= 2, q≥ 4. We further give an upper bound onk (ϱ+ 1, pm, ϱ)

    The Steinmann Cluster Bootstrap for N=4 Super Yang-Mills Amplitudes

    Full text link
    We review the bootstrap method for constructing six- and seven-particle amplitudes in planar N=4\mathcal{N}=4 super Yang-Mills theory, by exploiting their analytic structure. We focus on two recently discovered properties which greatly simplify this construction at symbol and function level, respectively: the extended Steinmann relations, or equivalently cluster adjacency, and the coaction principle. We then demonstrate their power in determining the six-particle amplitude through six and seven loops in the NMHV and MHV sectors respectively, as well as the symbol of the NMHV seven-particle amplitude to four loops.Comment: 36 pages, 4 figures, 5 tables, 1 ancillary file. Contribution to the proceedings of the Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2019), 31 August - 25 September 2019, Corfu, Greec
    corecore