830 research outputs found

    Expanding the expressive power of Monadic Second-Order logic on restricted graph classes

    Full text link
    We combine integer linear programming and recent advances in Monadic Second-Order model checking to obtain two new algorithmic meta-theorems for graphs of bounded vertex-cover. The first shows that cardMSO1, an extension of the well-known Monadic Second-Order logic by the addition of cardinality constraints, can be solved in FPT time parameterized by vertex cover. The second meta-theorem shows that the MSO partitioning problems introduced by Rao can also be solved in FPT time with the same parameter. The significance of our contribution stems from the fact that these formalisms can describe problems which are W[1]-hard and even NP-hard on graphs of bounded tree-width. Additionally, our algorithms have only an elementary dependence on the parameter and formula. We also show that both results are easily extended from vertex cover to neighborhood diversity.Comment: Accepted for IWOCA 201

    Solving Hard Stable Matching Problems Involving Groups of Similar Agents

    Get PDF
    Many important stable matching problems are known to be NP-hard, even when strong restrictions are placed on the input. In this paper we seek to identify structural properties of instances of stable matching problems which will allow us to design efficient algorithms using elementary techniques. We focus on the setting in which all agents involved in some matching problem can be partitioned into k different types, where the type of an agent determines his or her preferences, and agents have preferences over types (which may be refined by more detailed preferences within a single type). This situation would arise in practice if agents form preferences solely based on some small collection of agents' attributes. We also consider a generalisation in which each agent may consider some small collection of other agents to be exceptional, and rank these in a way that is not consistent with their types; this could happen in practice if agents have prior contact with a small number of candidates. We show that (for the case without exceptions), several well-studied NP-hard stable matching problems including Max SMTI (that of finding the maximum cardinality stable matching in an instance of stable marriage with ties and incomplete lists) belong to the parameterised complexity class FPT when parameterised by the number of different types of agents needed to describe the instance. For Max SMTI this tractability result can be extended to the setting in which each agent promotes at most one `exceptional' candidate to the top of his/her list (when preferences within types are not refined), but the problem remains NP-hard if preference lists can contain two or more exceptions and the exceptional candidates can be placed anywhere in the preference lists, even if the number of types is bounded by a constant.Comment: Results on SMTI appear in proceedings of WINE 2018; Section 6 contains work in progres

    The Algebraic Intersection Type Unification Problem

    Full text link
    The algebraic intersection type unification problem is an important component in proof search related to several natural decision problems in intersection type systems. It is unknown and remains open whether the algebraic intersection type unification problem is decidable. We give the first nontrivial lower bound for the problem by showing (our main result) that it is exponential time hard. Furthermore, we show that this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type matching (one-sided unification), which is known to be NP-complete. We place the algebraic intersection type unification problem in the context of unification theory. The equational theory of intersection types can be presented as an algebraic theory with an ACI (associative, commutative, and idempotent) operator (intersection type) combined with distributivity properties with respect to a second operator (function type). Although the problem is algebraically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of unification, and our investigation of the problem suggests that new methods are required to understand the problem. Thus, for the lower bound proof, we were not able to reduce from known results in ACI-unification theory and use game-theoretic methods for two-player tiling games
    • …
    corecore