2,549 research outputs found

    Satisfiability with exponential families

    Get PDF
    Fix a set S⊆{0,1}∗ of exponential size, e.g. |S∩{0,1}^n|∈Ω(α^n),α>1. The S-SAT problem asks whether a propositional formula F over variables v_1, ..., v_n has a satisfying assignment (v_1,…,v_n)∈{0,1}^n∩S. Our interest is in determining the complexity of S-SAT. We prove that S-SAT is NP-complete for all context-free sets S. Furthermore, we show that if S-SAT is in P for some exponential S, then SAT and all problems in NP have polynomial circuits. This strongly indicates that satisfiability with exponential families is a hard problem. However, we also give an example of an exponential set S for which the S-SAT problem is not NP-hard, provided P≠NP

    A Casual Tour Around a Circuit Complexity Bound

    Full text link
    I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the perspective of someone trying to discover it.Comment: 21 pages, 2 figures. An earlier version appeared in SIGACT News, September 201

    On Tackling the Limits of Resolution in SAT Solving

    Full text link
    The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers

    Relativized Propositional Calculus

    Full text link
    Proof systems for the Relativized Propositional Calculus are defined and compared.Comment: 8 page

    Recompression: a simple and powerful technique for word equations

    Get PDF
    In this paper we present an application of a simple technique of local recompression, previously developed by the author in the context of compressed membership problems and compressed pattern matching, to word equations. The technique is based on local modification of variables (replacing X by aX or Xa) and iterative replacement of pairs of letters appearing in the equation by a `fresh' letter, which can be seen as a bottom-up compression of the solution of the given word equation, to be more specific, building an SLP (Straight-Line Programme) for the solution of the word equation. Using this technique we give a new, independent and self-contained proofs of most of the known results for word equations. To be more specific, the presented (nondeterministic) algorithm runs in O(n log n) space and in time polynomial in log N, where N is the size of the length-minimal solution of the word equation. The presented algorithm can be easily generalised to a generator of all solutions of the given word equation (without increasing the space usage). Furthermore, a further analysis of the algorithm yields a doubly exponential upper bound on the size of the length-minimal solution. The presented algorithm does not use exponential bound on the exponent of periodicity. Conversely, the analysis of the algorithm yields an independent proof of the exponential bound on exponent of periodicity. We believe that the presented algorithm, its idea and analysis are far simpler than all previously applied. Furthermore, thanks to it we can obtain a unified and simple approach to most of known results for word equations. As a small additional result we show that for O(1) variables (with arbitrary many appearances in the equation) word equations can be solved in linear space, i.e. they are context-sensitive.Comment: Submitted to a journal. Since previous version the proofs were simplified, overall presentation improve

    An Introduction to Quantum Complexity Theory

    Get PDF
    We give a basic overview of computational complexity, query complexity, and communication complexity, with quantum information incorporated into each of these scenarios. The aim is to provide simple but clear definitions, and to highlight the interplay between the three scenarios and currently-known quantum algorithms.Comment: 28 pages, LaTeX, 11 figures within the text, to appear in "Collected Papers on Quantum Computation and Quantum Information Theory", edited by C. Macchiavello, G.M. Palma, and A. Zeilinger (World Scientific
    • …
    corecore